Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.
Vyšlo v časopise:
Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001131
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001131
Souhrn
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.
Zdroje
1. KyleJL
HarrisE
2008 Global spread and persistence of dengue. Annu Rev Microbiol 62 71 92
2. StiasnyK
HeinzFX
2006 Flavivirus membrane fusion. J Gen Virol 87 2755 2766
3. van der SchaarHM
RustMJ
ChenC
van der Ende-MetselaarH
WilschutJ
2008 Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4 e1000244
4. MossoC
Galvan-MendozaIJ
LudertJE
del AngelRM
2008 Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378 193 199
5. PanyasrivanitM
KhakpoorA
WikanN
SmithDR
2009 Linking dengue virus entry and translation/replication through amphisomes. Autophagy 5 434 435
6. HarrisonSC
2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698
7. MukhopadhyayS
KuhnRJ
RossmannMG
2005 A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3 13 22
8. KielianM
ReyFA
2006 Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4 67 76
9. NayakV
DessauM
KuceraK
AnthonyK
LedizetM
2009 Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J Virol 83 4338 4344
10. WeissenhornW
HinzA
GaudinY
2007 Virus membrane fusion. FEBS Lett 581 2150 2155
11. SchmidtAG
YangPL
HarrisonSC
2010 Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog 6 e1000851
12. LiaoM
Sanchez-San MartinC
ZhengA
KielianM
2010 In Vitro Reconstitution Reveals Key Intermediate States of Trimer Formation by the Dengue Virus Membrane Fusion Protein. J Virol
13. RandolphVB
StollarV
1990 Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol 71 Pt 8 1845 1850
14. SummersPL
CohenWH
RuizMM
HaseT
EckelsKH
1989 Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res 12 383 392
15. GuirakhooF
HuntAR
LewisJG
RoehrigJT
1993 Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194 219 223
16. KielianMC
HeleniusA
1984 Role of cholesterol in fusion of Semliki Forest virus with membranes. J Virol 52 281 283
17. SmitJM
BittmanR
WilschutJ
1999 Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol 73 8476 8484
18. KielianM
ChatterjeePK
GibbonsDL
LuYE
2000 Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. Subcell Biochem 34 409 455
19. UmashankarM
Sanchez-San MartinC
LiaoM
ReillyB
GuoA
2008 Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J Virol 82 9245 9253
20. CoilDA
MillerAD
2004 Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 78 10920 10926
21. KobayashiT
BeuchatMH
ChevallierJ
MakinoA
MayranN
2002 Separation and characterization of late endosomal membrane domains. J Biol Chem 277 32157 32164
22. StegmannT
HoekstraD
ScherphofG
WilschutJ
1986 Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. J Biol Chem 261 10966 10969
23. ChenA
LeikinaE
MelikovK
PodbilewiczB
KozlovM
2008 Fusion pore expansion during syncytium formation is restricted by an actin network. Journal of Cell Science in press
24. EdwardsJ
MannE
BrownDT
1983 Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. J Virol 45 1090 1097
25. Da PoianAT
CarneiroFA
StaufferF
2009 Viral inactivation based on inhibition of membrane fusion: understanding the role of histidine protonation to develop new viral vaccines. Protein Pept Lett 16 779 785
26. GentryMK
HenchalEA
McCownJM
BrandtWE
DalrympleJM
1982 Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg 31 548 555
27. WhiteJ
MatlinK
HeleniusA
1981 Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 89 674 679
28. KielianMC
KeranenS
KaariainenL
HeleniusA
1984 Membrane fusion mutants of Semliki Forest virus. J Cell Biol 98 139 145
29. LeeH
BrownDT
1994 Mutations in an exposed domain of Sindbis virus capsid protein result in the production of noninfectious virions and morphological variants. Virology 202 390 400
30. SmitJM
LiG
SchoenP
CorverJ
BittmanR
2002 Fusion of alphaviruses with liposomes is a non-leaky process. FEBS Lett 521 62 66
31. ThongthaiW
WeningerK
2009 Photoinactivation of sindbis virus infectivity without inhibition of membrane fusion. Photochem Photobiol 85 801 806
32. WesselsL
EltingMW
ScimecaD
WeningerK
2007 Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 93 526 538
33. FadeelB
XueD
2009 The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44 264 277
34. LiaoM
KielianM
2005 Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J Cell Biol 171 111 120
35. YeungT
HeitB
DubuissonJF
FairnGD
ChiuB
2009 Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. J Cell Biol 185 917 928
36. BayerN
SchoberD
PrchlaE
MurphyRF
BlaasD
1998 Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol 72 9645 9655
37. CarrCM
KimPS
1993 A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73 823 832
38. SchmidS
FuchsR
KielianM
HeleniusA
MellmanI
1989 Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J Cell Biol 108 1291 1300
39. ChernomordikLV
KozlovMM
2003 Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72 175 207
40. MelikyanGB
BrenerSA
OkDC
CohenFS
1997 Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol 136 995 1005
41. DoxseySJ
SambrookJ
HeleniusA
WhiteJ
1985 An efficient method for introducing macromolecules into living cells. J Cell Biol 101 19 27
42. SpruceAE
IwataA
WhiteJM
AlmersW
1989 Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342 555 558
43. ZaitsevaE
MittalA
GriffinDE
ChernomordikLV
2005 Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J Cell Biol 169 167 177
44. CorverJ
OrtizA
AllisonSL
SchalichJ
HeinzFX
2000 Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 269 37 46
45. FritzR
StiasnyK
HeinzFX
2008 Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183 353 361
46. NievaJL
BronR
CorverJ
WilschutJ
1994 Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J 13 2797 2804
47. KlimjackMR
JeffreyS
KielianM
1994 Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein. J Virol 68 6940 6946
48. SamsonovAV
ChatterjeePK
RazinkovVI
EngCH
KielianM
2002 Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus. J Virol 76 12691 12702
49. McLaughlinS
1989 The Electrostatic Properties of Membranes. 113 136
50. StaufferF
MeloMN
CarneiroFA
SousaFJ
JulianoMA
2008 Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering. Mol Membr Biol 25 128 138
51. PohMK
YipA
ZhangS
PriestleJP
MaNL
2009 A small molecule fusion inhibitor of dengue virus. Antiviral Res 84 260 266
52. WhiteJ
HeleniusA
1980 pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A 77 3273 3277
53. StiasnyK
BrandlerS
KosslC
HeinzFX
2007 Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies. J Virol 81 11526 11531
54. GollinsSW
PorterfieldJS
1986 pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. J Gen Virol 67 157 166
55. WaartsBL
BittmanR
WilschutJ
2002 Sphingolipid- and cholesterol-dependence of alphavirus membrane fusion: Lack of correlation with lipid raft formation in target liposomes. J Biol Chem 23 23
56. van der SchaarHM
2009 Cell entry mechanisms of dengue virus: University of Groningen. 160
57. van der SchaarHM
RustMJ
WaartsBL
van der Ende-MetselaarH
KuhnRJ
2007 Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81 12019 12028
58. Le BlancI
LuyetPP
PonsV
FergusonC
EmansN
2005 Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 7 653 664
59. JohannsdottirHK
ManciniR
KartenbeckJ
AmatoL
HeleniusA
2009 Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol 83 440 453
60. AcostaEG
CastillaV
DamonteEB
2009 Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11 1533 1549
61. KrishnanMN
SukumaranB
PalU
AgaisseH
MurrayJL
2007 Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81 4881 4885
62. ChernomordikLV
FrolovVA
LeikinaE
BronkP
ZimmerbergJ
1998 The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 140 1369 1382
63. MelikyanGB
JinH
LambRA
CohenFS
1997 The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology 235 118 128
64. EndoTA
KobayashiT
OhkiK
1996 A Chinese hamster ovary cell mutant resistant to phosphatidylserine is defective in transbilayer movement of cell surface phosphatidylserine. Exp Cell Res 228 341 346
65. VermesI
HaanenC
Steffens-NakkenH
ReutelingspergerC
1995 A novel assay for apoptosis.Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184 39 51
66. NaslavskyN
WeigertR
DonaldsonJG
2003 Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell 14 417 431
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why
- Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice
- Antimicrobial Peptides: Primeval Molecules or Future Drugs?
- Crystal Structure of DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems