#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids


Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.


Vyšlo v časopise: Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001131
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001131

Souhrn

Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.


Zdroje

1. KyleJL

HarrisE

2008 Global spread and persistence of dengue. Annu Rev Microbiol 62 71 92

2. StiasnyK

HeinzFX

2006 Flavivirus membrane fusion. J Gen Virol 87 2755 2766

3. van der SchaarHM

RustMJ

ChenC

van der Ende-MetselaarH

WilschutJ

2008 Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4 e1000244

4. MossoC

Galvan-MendozaIJ

LudertJE

del AngelRM

2008 Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378 193 199

5. PanyasrivanitM

KhakpoorA

WikanN

SmithDR

2009 Linking dengue virus entry and translation/replication through amphisomes. Autophagy 5 434 435

6. HarrisonSC

2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698

7. MukhopadhyayS

KuhnRJ

RossmannMG

2005 A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3 13 22

8. KielianM

ReyFA

2006 Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4 67 76

9. NayakV

DessauM

KuceraK

AnthonyK

LedizetM

2009 Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J Virol 83 4338 4344

10. WeissenhornW

HinzA

GaudinY

2007 Virus membrane fusion. FEBS Lett 581 2150 2155

11. SchmidtAG

YangPL

HarrisonSC

2010 Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog 6 e1000851

12. LiaoM

Sanchez-San MartinC

ZhengA

KielianM

2010 In Vitro Reconstitution Reveals Key Intermediate States of Trimer Formation by the Dengue Virus Membrane Fusion Protein. J Virol

13. RandolphVB

StollarV

1990 Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol 71 Pt 8 1845 1850

14. SummersPL

CohenWH

RuizMM

HaseT

EckelsKH

1989 Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res 12 383 392

15. GuirakhooF

HuntAR

LewisJG

RoehrigJT

1993 Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194 219 223

16. KielianMC

HeleniusA

1984 Role of cholesterol in fusion of Semliki Forest virus with membranes. J Virol 52 281 283

17. SmitJM

BittmanR

WilschutJ

1999 Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol 73 8476 8484

18. KielianM

ChatterjeePK

GibbonsDL

LuYE

2000 Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. Subcell Biochem 34 409 455

19. UmashankarM

Sanchez-San MartinC

LiaoM

ReillyB

GuoA

2008 Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J Virol 82 9245 9253

20. CoilDA

MillerAD

2004 Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 78 10920 10926

21. KobayashiT

BeuchatMH

ChevallierJ

MakinoA

MayranN

2002 Separation and characterization of late endosomal membrane domains. J Biol Chem 277 32157 32164

22. StegmannT

HoekstraD

ScherphofG

WilschutJ

1986 Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. J Biol Chem 261 10966 10969

23. ChenA

LeikinaE

MelikovK

PodbilewiczB

KozlovM

2008 Fusion pore expansion during syncytium formation is restricted by an actin network. Journal of Cell Science in press

24. EdwardsJ

MannE

BrownDT

1983 Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. J Virol 45 1090 1097

25. Da PoianAT

CarneiroFA

StaufferF

2009 Viral inactivation based on inhibition of membrane fusion: understanding the role of histidine protonation to develop new viral vaccines. Protein Pept Lett 16 779 785

26. GentryMK

HenchalEA

McCownJM

BrandtWE

DalrympleJM

1982 Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg 31 548 555

27. WhiteJ

MatlinK

HeleniusA

1981 Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 89 674 679

28. KielianMC

KeranenS

KaariainenL

HeleniusA

1984 Membrane fusion mutants of Semliki Forest virus. J Cell Biol 98 139 145

29. LeeH

BrownDT

1994 Mutations in an exposed domain of Sindbis virus capsid protein result in the production of noninfectious virions and morphological variants. Virology 202 390 400

30. SmitJM

LiG

SchoenP

CorverJ

BittmanR

2002 Fusion of alphaviruses with liposomes is a non-leaky process. FEBS Lett 521 62 66

31. ThongthaiW

WeningerK

2009 Photoinactivation of sindbis virus infectivity without inhibition of membrane fusion. Photochem Photobiol 85 801 806

32. WesselsL

EltingMW

ScimecaD

WeningerK

2007 Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 93 526 538

33. FadeelB

XueD

2009 The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44 264 277

34. LiaoM

KielianM

2005 Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J Cell Biol 171 111 120

35. YeungT

HeitB

DubuissonJF

FairnGD

ChiuB

2009 Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. J Cell Biol 185 917 928

36. BayerN

SchoberD

PrchlaE

MurphyRF

BlaasD

1998 Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol 72 9645 9655

37. CarrCM

KimPS

1993 A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73 823 832

38. SchmidS

FuchsR

KielianM

HeleniusA

MellmanI

1989 Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J Cell Biol 108 1291 1300

39. ChernomordikLV

KozlovMM

2003 Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72 175 207

40. MelikyanGB

BrenerSA

OkDC

CohenFS

1997 Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol 136 995 1005

41. DoxseySJ

SambrookJ

HeleniusA

WhiteJ

1985 An efficient method for introducing macromolecules into living cells. J Cell Biol 101 19 27

42. SpruceAE

IwataA

WhiteJM

AlmersW

1989 Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342 555 558

43. ZaitsevaE

MittalA

GriffinDE

ChernomordikLV

2005 Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J Cell Biol 169 167 177

44. CorverJ

OrtizA

AllisonSL

SchalichJ

HeinzFX

2000 Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 269 37 46

45. FritzR

StiasnyK

HeinzFX

2008 Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183 353 361

46. NievaJL

BronR

CorverJ

WilschutJ

1994 Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J 13 2797 2804

47. KlimjackMR

JeffreyS

KielianM

1994 Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein. J Virol 68 6940 6946

48. SamsonovAV

ChatterjeePK

RazinkovVI

EngCH

KielianM

2002 Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus. J Virol 76 12691 12702

49. McLaughlinS

1989 The Electrostatic Properties of Membranes. 113 136

50. StaufferF

MeloMN

CarneiroFA

SousaFJ

JulianoMA

2008 Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering. Mol Membr Biol 25 128 138

51. PohMK

YipA

ZhangS

PriestleJP

MaNL

2009 A small molecule fusion inhibitor of dengue virus. Antiviral Res 84 260 266

52. WhiteJ

HeleniusA

1980 pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A 77 3273 3277

53. StiasnyK

BrandlerS

KosslC

HeinzFX

2007 Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies. J Virol 81 11526 11531

54. GollinsSW

PorterfieldJS

1986 pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. J Gen Virol 67 157 166

55. WaartsBL

BittmanR

WilschutJ

2002 Sphingolipid- and cholesterol-dependence of alphavirus membrane fusion: Lack of correlation with lipid raft formation in target liposomes. J Biol Chem 23 23

56. van der SchaarHM

2009 Cell entry mechanisms of dengue virus: University of Groningen. 160

57. van der SchaarHM

RustMJ

WaartsBL

van der Ende-MetselaarH

KuhnRJ

2007 Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81 12019 12028

58. Le BlancI

LuyetPP

PonsV

FergusonC

EmansN

2005 Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 7 653 664

59. JohannsdottirHK

ManciniR

KartenbeckJ

AmatoL

HeleniusA

2009 Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol 83 440 453

60. AcostaEG

CastillaV

DamonteEB

2009 Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11 1533 1549

61. KrishnanMN

SukumaranB

PalU

AgaisseH

MurrayJL

2007 Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81 4881 4885

62. ChernomordikLV

FrolovVA

LeikinaE

BronkP

ZimmerbergJ

1998 The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 140 1369 1382

63. MelikyanGB

JinH

LambRA

CohenFS

1997 The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology 235 118 128

64. EndoTA

KobayashiT

OhkiK

1996 A Chinese hamster ovary cell mutant resistant to phosphatidylserine is defective in transbilayer movement of cell surface phosphatidylserine. Exp Cell Res 228 341 346

65. VermesI

HaanenC

Steffens-NakkenH

ReutelingspergerC

1995 A novel assay for apoptosis.Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184 39 51

66. NaslavskyN

WeigertR

DonaldsonJG

2003 Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell 14 417 431

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#