#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phenolglycolipid-1 Expressed by Engineered BCG Modulates Early Interaction with Human Phagocytes


The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.


Vyšlo v časopise: Phenolglycolipid-1 Expressed by Engineered BCG Modulates Early Interaction with Human Phagocytes. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001159
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001159

Souhrn

The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.


Zdroje

1. WHO 2004 WHO leprosy elimination project: status report 2003 Geneva, Switzerland 8 11

2. WHO 2009 Global leprosy situation, 2009. Weekly epidemiological record 84 333 340

3. BrittonWJ

LockwoodDNJ

2004 Leprosy. The Lancet 363 1209 1219

4. HunterSW

BrennanPJ

1981 A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J Bacteriol 147 728 735

5. DafféM

LanéelleMA

1988 Distribution of Phthiocerol diester, phenolic mycosides and related compounds in Mycobacteria. J Gen Microbiol 134 2049 2055

6. RambukkanaA

SalzerJL

YurchencoPD

TuomanenE

1997 Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-alpha2 chain. Cell 88 811 821

7. NgV

ZanazziG

TimplR

TaltsJF

SalzerJL

2000 Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103 511 524

8. MarquesMAM

AntônioVL

SarnoEN

BrennanPJ

PessolaniMCV

2001 Binding of α2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells. J Med Microbiol 50 23 28

9. NeillMA

KlebanoffSJ

1988 The effect of phenolic glycolipid-1 from Mycobacterium leprae on the antimicrobial activity of human macrophages. J Exp Med 167 30 42

10. ChanJ

FujiwaraT

BrennanP

McNeilM

TurcoSJ

1989 Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci USA 86 2453 2457

11. SchlesingerLS

HorwitzMA

1991 Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J Exp Med 174 1031 1038

12. SilvaCL

FaccioliLH

1993 Suppression of human monocyte cytokine release by phenolic glycolipid-1 of Mycobacterium leprae. Int J Lepr Other Mycobact Dis 61 107 108

13. HashimotoK

MaedaY

KimuraH

MasudaA

MatsuokaM

2002 Mycobacterium leprae infection in monocyte-derived dendritic cells and its influence on antigen-presenting function. Infect Immun 70 5167 5176

14. MurrayRA

SiddiquiMR

MendilloM

KrahenbuhlJ

KaplanG

2007 Mycobacterium leprae inhibits dendritic cell activation and maturation. J Immunol 178 338 344

15. HunterSW

FujiwaraT

BrennanPJ

1982 Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J Biol Chem 257 15072 15078

16. PerezE

ConstantP

LavalF

LemassuA

LanéelleMA

2004 Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J Biol Chem 279 42584 45592

17. GuilhotC

DafféM

2008 Polyketides and polyketides-containing glycolipids of Mycobacterium tuberculosis: structure, biosynthesis and biological activities.

KaufmannSHE

RubinE

Hanbook of tuberculosis Molecular biology and biochemistry Weinheim Wiley-VCH Verlag GmbH & Co 21 51

18. OnwuemeKC

VosCJ

ZuritaJ

FerrarasJA

QuadriLEN

2005 The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 44 259 302

19. PerezE

ConstantP

LemassuA

LavalF

DaffeM

2004 Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. J Biol Chem 279 42574 42583

20. ColeST

BroschR

ParkhillJ

GarnierT

ChurcherC

1998 Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 537 544

21. BardarovS

KriakovJ

CarriereC

YuS

VaamondeC

1997 Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94 10961 10966

22. MalagaW

PerezE

GuilhotC

2003 Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol Lett 219 261 268

23. MalagaW

ConstantP

EuphrasieD

CataldiA

DafféM

2008 Deciphering the genetic bases of the structural diversity of phenolic glycolipids in strains of the Mycobacterium tuberculosis complex. J Biol Chem 283 15177 15184

24. ConstantP

PerezE

MalagaW

LanéelleM-A

SaurelO

2002 Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the M. tuberculosis complex: evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbour a frameshift mutation in the pks15/1 gene. J Biol Chem 277 38148 38158

25. StoverCK

de la CruzVF

FuerstTR

BurleinJE

BensonLA

1991 New use of BCG for recombinant vaccines. Nature 351 456 460

26. DafféM

LanéelleM-A

1989 Diglycosyl phenol phthiocerol diester of Mycobacterium leprae. Biochim Biophys Acta 1002 333 337

27. Le CabecV

ColsC

Maridonneau-PariniI

2000 Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation. Infect Immun 68 4736 4745

28. CywesC

GodenirNL

HoppeHC

ScholleRR

SteynLM

1996 Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in chinese hamster ovary cells. Infect Immun 64 5373 5383

29. SchlesingerLS

HorwitzMA

1990 Phagocytosis of leprosy bacilli is mediated by complement receptor CR1 and CR3 on human monocytes and complement component C3 in serum. J Clin Invest 85 1304 1314

30. DiamondMS

Garcia-AguilarJ

BickfodtJK

CorbiAL

SpringerTA

1993 The I-domain is a major recognition site on leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 120 1031 1043

31. ErnstJD

1998 Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66 1277 1281

32. SendideK

ReinerNE

LeeJS

BourgoinS

TalalA

2005 Cross-talk between CD14 and complement receptor 3 promotes phagocytosis of mycobacteria: regulation by phosphatidylinositol 3-kinase and cytohesin-1. J Immunol 174 4210 4219

33. ThorntonBP

VetvickaV

PitmanM

GoldmanRC

RossGD

1996 Analysis of the sugar specificity and molecular location of the β-glucan-biding lectin site of complement receptor type 3 (CD11b, CD18). J Immunol 156 1235 1246

34. MorelliAE

LarreginaAT

ShufeskyWJ

ZahorchakAF

LogarAJ

2003 Internalization of cirvulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101 611 620

35. MedvedevAE

FloT

IngallsRR

GolenbockDT

TetiG

1998 Involvment of CD14 and complement receptors CR3 and CR4 in nuclear factor-kappa B activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J Immunol 160 4535 4542

36. MarthT

KelsallBL

1997 Regulation of interleukin-12 by complement receptor 3 signalling. J Exp Med 185 1987 1995

37. BrandhorstT

WüthrichM

Finkel-JimenezB

WarnerT

KleinB

2004 Exploiting type 3 complement receptor for TNF-α suppression, immune evasion and progressive pulmonary fungal infection. J Immunol 173 7444 7453

38. VilléC

Gastambide-OdierM

1970 Le 3-O-méthyl-L-rhamnose, sucre du mycoside G de Mycobacterium marinum. Carbohydr Res 12 97 107

39. DafféM

VarnerotA

Vincent Lévy-FrébaultV

1992 The phenolic mycoside of Mycobacterium ulcerans: structure and taxonomic implications. J Gen Microbiol 138 131 137

40. EiglmeierK

HonoréN

WoodsSA

CaudronB

ColeST

1993 Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae. Mol Microbiol 7 197 206

41. Le DantecC

WinterN

GicquelB

VincentV

PicardeauM

2001 Genomic sequence and transcriptional analysis of a 23-kb mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J Bacteriol 183 2157 2164

42. BardarovS

BardarovSJr

PavelkaMS

SamdandamurthyV

LarsenM

2002 Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148 3007 3017

43. HuetG

ConstantP

MalagaW

LanéelleM-A

KremerK

2008 A lipid profile typifies the Beijing strains of Mycobacterium tuberculosis. Identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids. J Biol Chem 284 27101 27113

44. Astarie-DequekerC

Le GuyaderL

MalagaW

SeaphanhF-K

ChalutC

2009 Phthiocerol dimycocerosates of M. tuberculosis participate in the invasion of human macrophages by inducing changes in the lipid organization of the plasma membrane. PLoS Pathogens 5 e1000289

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#