Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.
Vyšlo v časopise:
Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001153
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001153
Souhrn
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.
Zdroje
1. HurleyJH
EmrSD
2006 The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35 277 298
2. RaiborgC
StenmarkH
2009 The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458 445 452
3. CarltonJG
Martin-SerranoJ
2007 Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316 1908 1912
4. MoritaE
SandrinV
ChungHY
MorhamSG
GygiSP
2007 Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26 4215 4227
5. BieniaszPD
2006 Late budding domains and host proteins in enveloped virus release. Virology 344 55 63
6. MoritaE
SundquistWI
2004 Retrovirus budding. Annu Rev Cell Dev Biol 20 395 425
7. GarrusJE
von SchwedlerUK
PornillosOW
MorhamSG
ZavitzKH
2001 Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107 55 65
8. Martin-SerranoJ
ZangT
BieniaszPD
2001 HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7 1313 1319
9. VerPlankL
BouamrF
LaGrassaTJ
AgrestaB
KikonyogoA
2001 Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci U S A 98 7724 7729
10. DemirovDG
OnoA
OrensteinJM
FreedEO
2002 Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 99 955 960
11. StrackB
CalistriA
CraigS
PopovaE
GottlingerHG
2003 AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114 689 699
12. Martin-SerranoJ
YarovoyA
Perez-CaballeroD
BieniaszPD
2003 Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 100 12414 12419
13. von SchwedlerUK
StuchellM
MullerB
WardDM
ChungHY
2003 The protein network of HIV budding. Cell 114 701 713
14. StrackB
CalistriA
AccolaMA
PaluG
GottlingerHG
2000 A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A 97 13063 13068
15. HartyRN
BrownME
WangG
HuibregtseJ
HayesFP
2000 A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci U S A 97 13871 13876
16. KikonyogoA
BouamrF
VanaML
XiangY
AiyarA
2001 Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc Natl Acad Sci U S A 98 11199 11204
17. Martin-SerranoJ
EastmanSW
ChungW
BieniaszPD
2005 HECT ubiquitin ligases link viral and cellular PPxY motifs to the vacuolar protein-sorting pathway. J Cell Biol 168 89 101
18. YasudaJ
HunterE
NakaoM
ShidaH
2002 Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding. EMBO Rep 3 636 640
19. BabstM
KatzmannDJ
Estepa-SabalEJ
MeerlooT
EmrSD
2002 Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3 271 282
20. BabstM
KatzmannDJ
SnyderWB
WendlandB
EmrSD
2002 Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3 283 289
21. KatzmannDJ
BabstM
EmrSD
2001 Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106 145 155
22. WollertT
HurleyJH
Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature
23. WollertT
WunderC
Lippincott-SchwartzJ
HurleyJH
2009 Membrane scission by the ESCRT-III complex. Nature 458 172 177
24. LataS
SchoehnG
JainA
PiresR
PiehlerJ
2008 Helical structures of ESCRT-III are disassembled by VPS4. Science 321 1354 1357
25. SaksenaS
WahlmanJ
TeisD
JohnsonAE
EmrSD
2009 Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136 97 109
26. ZamborliniA
UsamiY
RadoshitzkySR
PopovaE
PaluG
2006 Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc Natl Acad Sci U S A 103 19140 19145
27. FisherRD
ChungHY
ZhaiQ
RobinsonH
SundquistWI
2007 Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128 841 852
28. McCulloughJ
FisherRD
WhitbyFG
SundquistWI
HillCP
2008 ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci U S A 105 7687 7691
29. ZhadinaM
McClureMO
JohnsonMC
BieniaszPD
2007 Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proc Natl Acad Sci U S A 104 20031 20036
30. UsamiY
PopovS
PopovaE
GottlingerHG
2008 Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J Virol 82 4898 4907
31. ChungHY
MoritaE
von SchwedlerU
MullerB
KrausslichHG
2008 NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J Virol 82 4884 4897
32. MedinaG
ZhangY
TangY
GottweinE
VanaML
2005 The functionally exchangeable L domains in RSV and HIV-1 Gag direct particle release through pathways linked by Tsg101. Traffic 6 880 894
33. BacheKG
RaiborgC
MehlumA
StenmarkH
2003 STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem 278 12513 12521
34. BishopN
HormanA
WoodmanP
2002 Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates. J Cell Biol 157 91 101
35. PoloS
SigismundS
FarettaM
GuidiM
CapuaMR
2002 A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416 451 455
36. ShihSC
KatzmannDJ
SchnellJD
SutantoM
EmrSD
2002 Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 4 389 393
37. SlagsvoldT
AaslandR
HiranoS
BacheKG
RaiborgC
2005 Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J Biol Chem 280 19600 19606
38. HickeL
2001 A new ticket for entry into budding vesicles-ubiquitin. Cell 106 527 530
39. UrbanowskiJL
PiperRC
2001 Ubiquitin sorts proteins into the intralumenal degradative compartment of the late-endosome/vacuole. Traffic 2 622 630
40. PuttermanD
PepinskyRB
VogtVM
1990 Ubiquitin in avian leukosis virus particles. Virology 176 633 637
41. OttDE
CorenLV
CopelandTD
KaneBP
JohnsonDG
1998 Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J Virol 72 2962 2968
42. OttDE
CorenLV
ChertovaEN
GagliardiTD
SchubertU
2000 Ubiquitination of HIV-1 and MuLV Gag. Virology 278 111 121
43. HeideckerG
LloydPA
FoxK
NagashimaK
DerseD
2004 Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release. J Virol 78 6636 6648
44. PatnaikA
ChauV
WillsJW
2000 Ubiquitin is part of the retrovirus budding machinery. Proc Natl Acad Sci U S A 97 13069 13074
45. SchubertU
OttDE
ChertovaEN
WelkerR
TessmerU
2000 Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci U S A 97 13057 13062
46. GottweinE
JagerS
HabermannA
KrausslichHG
2006 Cumulative mutations of ubiquitin acceptor sites in human immunodeficiency virus type 1 gag cause a late budding defect. J Virol 80 6267 6275
47. SpidelJL
CravenRC
WilsonCB
PatnaikA
WangH
2004 Lysines close to the Rous sarcoma virus late domain critical for budding. J Virol 78 10606 10616
48. JoshiA
MunshiU
AblanSD
NagashimaK
FreedEO
2008 Functional replacement of a retroviral late domain by ubiquitin fusion. Traffic 9 1972 1983
49. BabstM
WendlandB
EstepaEJ
EmrSD
1998 The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17 2982 2993
50. BishopN
WoodmanP
2000 ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol Biol Cell 11 227 239
51. MarcheseA
RaiborgC
SantiniF
KeenJH
StenmarkH
2003 The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 5 709 722
52. RotinD
KumarS
2009 Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10 398 409
53. EastmanSW
Martin-SerranoJ
ChungW
ZangT
BieniaszPD
2005 Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J Biol Chem 280 628 636
54. Martin-SerranoJ
ZangT
BieniaszPD
2003 Role of ESCRT-I in retroviral budding. J Virol 77 4794 4804
55. StuchellMD
GarrusJE
MullerB
StrayKM
GhaffarianS
2004 The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J Biol Chem 279 36059 36071
56. ParentLJ
BennettRP
CravenRC
NelleTD
KrishnaNK
1995 Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J Virol 69 5455 5460
57. ShieldsSB
OestreichAJ
WinistorferS
NguyenD
PayneJA
2009 ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting. J Cell Biol 185 213 224
58. McNattMW
McKittrickI
WestM
OdorizziG
2007 Direct binding to Rsp5 mediates ubiquitin-independent sorting of Sna3 via the multivesicular body pathway. Mol Biol Cell 18 697 706
59. PornillosO
AlamSL
RichRL
MyszkaDG
DavisDR
2002 Structure and functional interactions of the Tsg101 UEV domain. EMBO J 21 2397 2406
60. SundquistWI
SchubertHL
KellyBN
HillGC
HoltonJM
2004 Ubiquitin recognition by the human TSG101 protein. Mol Cell 13 783 789
61. HiranoS
KawasakiM
UraH
KatoR
RaiborgC
2006 Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat Struct Mol Biol 13 272 277
62. LloydTE
AtkinsonR
WuMN
ZhouY
PennettaG
2002 Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108 261 269
63. RaiborgC
BacheKG
GilloolyDJ
MadshusIH
StangE
2002 Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4 394 398
64. MizunoE
KawahataK
KatoM
KitamuraN
KomadaM
2003 STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol Biol Cell 14 3675 3689
65. HongYH
AhnHC
LimJ
KimHM
JiHY
2009 Identification of a novel ubiquitin binding site of STAM1 VHS domain by NMR spectroscopy. FEBS Lett 583 287 292
66. RenX
HurleyJH
2010 VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 29 1045 1054
67. HiranoS
SuzukiN
SlagsvoldT
KawasakiM
TrambaioloD
2006 Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nat Struct Mol Biol 13 1031 1032
68. AlamSL
LangelierC
WhitbyFG
KoiralaS
RobinsonH
2006 Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nat Struct Mol Biol 13 1029 1030
69. StamenovaSD
FrenchME
HeY
FrancisSA
KramerZB
2007 Ubiquitin binds to and regulates a subset of SH3 domains. Mol Cell 25 273 284
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why
- Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice
- Antimicrobial Peptides: Primeval Molecules or Future Drugs?
- Crystal Structure of DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems