In Vitro and In Vivo Studies Identify Important Features of Dengue Virus pr-E Protein Interactions
Flaviviruses bud into the endoplasmic reticulum and are transported through the secretory pathway, where the mildly acidic environment triggers particle rearrangement and allows furin processing of the prM protein to pr and M. The peripheral pr peptide remains bound to virus at low pH and inhibits virus-membrane interaction. Upon exocytosis, the release of pr at neutral pH completes virus maturation to an infectious particle. Together this evidence suggests that pr may shield the flavivirus fusion protein E from the low pH environment of the exocytic pathway. Here we developed an in vitro system to reconstitute the interaction of dengue virus (DENV) pr with soluble truncated E proteins. At low pH recombinant pr bound to both monomeric and dimeric forms of E and blocked their membrane insertion. Exogenous pr interacted with mature infectious DENV and specifically inhibited virus fusion and infection. Alanine substitution of E H244, a highly conserved histidine residue in the pr-E interface, blocked pr-E interaction and reduced release of DENV virus-like particles. Folding, membrane insertion and trimerization of the H244A mutant E protein were preserved, and particle release could be partially rescued by neutralization of the low pH of the secretory pathway. Thus, pr acts to silence flavivirus fusion activity during virus secretion, and this function can be separated from the chaperone activity of prM. The sequence conservation of key residues involved in the flavivirus pr-E interaction suggests that this protein-protein interface may be a useful target for broad-spectrum inhibitors.
Vyšlo v časopise:
In Vitro and In Vivo Studies Identify Important Features of Dengue Virus pr-E Protein Interactions. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001157
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001157
Souhrn
Flaviviruses bud into the endoplasmic reticulum and are transported through the secretory pathway, where the mildly acidic environment triggers particle rearrangement and allows furin processing of the prM protein to pr and M. The peripheral pr peptide remains bound to virus at low pH and inhibits virus-membrane interaction. Upon exocytosis, the release of pr at neutral pH completes virus maturation to an infectious particle. Together this evidence suggests that pr may shield the flavivirus fusion protein E from the low pH environment of the exocytic pathway. Here we developed an in vitro system to reconstitute the interaction of dengue virus (DENV) pr with soluble truncated E proteins. At low pH recombinant pr bound to both monomeric and dimeric forms of E and blocked their membrane insertion. Exogenous pr interacted with mature infectious DENV and specifically inhibited virus fusion and infection. Alanine substitution of E H244, a highly conserved histidine residue in the pr-E interface, blocked pr-E interaction and reduced release of DENV virus-like particles. Folding, membrane insertion and trimerization of the H244A mutant E protein were preserved, and particle release could be partially rescued by neutralization of the low pH of the secretory pathway. Thus, pr acts to silence flavivirus fusion activity during virus secretion, and this function can be separated from the chaperone activity of prM. The sequence conservation of key residues involved in the flavivirus pr-E interaction suggests that this protein-protein interface may be a useful target for broad-spectrum inhibitors.
Zdroje
1. MorensDM
FolkersGK
FauciAS
2004 The challenge of emerging and re-emerging infectious diseases. Nature 430 242 249
2. MackenzieJS
GublerDJ
PetersenLR
2004 Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10 S98 109
3. WeaverSC
BarrettAD
2004 Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Micro 2 789 801
4. LindenbachBD
ThielH-J
RiceCM
2007 Flaviviruses: the viruses and their replication.
KnipeDM
HowleyPM
Fields' Virology. Fifth ed Philadelphia Lippincott, Williams and Wilkins 1101 1152
5. GublerDJ
2002 Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10 100 103
6. HalsteadSB
2007 Dengue. Lancet 370 1644 1652
7. KyleJL
HarrisE
2008 Global spread and persistence of dengue. Annu Rev Microbiol 62 71 92
8. WHO 2009 Dengue and Dengue Haemorrhagic Fever. WHO Fact Sheet N.117
9. WhiteheadSS
BlaneyJE
DurbinAP
MurphyBR
2007 Prospects for a dengue virus vaccine. Nat Rev Micro 5 518 528
10. MorensDM
FauciAS
2008 Dengue and hemorrhagic fever: a potential threat to public health in the United States. JAMA 299 214 216
11. MukhopadhyayS
KuhnRJ
RossmannMG
2005 A structural perspective of the flavivirus life cycle. Nat Rev Micro 3 13 22
12. van der SchaarHM
RustMJ
WaartsBL
van der Ende-MetselaarH
KuhnRJ
2007 Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81 12019 12028
13. van der SchaarHM
RustMJ
ChenC
van der Ende-MetselaarH
WilschutJ
2008 Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4 e1000244
14. ReyFA
HeinzFX
MandlC
KunzC
HarrisonSC
1995 The envelope glycoprotein from tick-borne encephalitis virus at 2A resolution. Nature 375 291 298
15. ModisY
OgataS
ClementsD
HarrisonSC
2003 A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100 6986 6991
16. ModisY
OgataS
ClementsD
HarrisonSC
2005 Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79 1223 1231
17. NybakkenGE
NelsonCA
ChenBR
DiamondMS
FremontDH
2006 Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80 11467 11474
18. KanaiR
KarK
AnthonyK
GouldLH
LedizetM
2006 Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80 11000 11008
19. ZhangY
ZhangW
OgataS
ClementsD
StraussJH
2004 Conformational changes of the flavivirus E glycoprotein. Structure (Camb) 12 1607 1618
20. KuhnRJ
ZhangW
RossmanMG
PletnevSV
CorverJ
2002 Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108 717 725
21. ModisY
OgataS
ClementsD
HarrisonSC
2004 Structure of the dengue virus envelope protein after membrane fusion. Nature 427 313 319
22. BressanelliS
StiasnyK
AllisonSL
SturaEA
DuquerroyS
2004 Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23 728 738
23. LescarJ
RousselA
WienMW
NavazaJ
FullerSD
2001 The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105 137 148
24. RousselA
LescarJ
VaneyM-C
WenglerG
WenglerG
2006 Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14 75 86
25. GibbonsDL
VaneyM-C
RousselA
VigourouxA
ReillyB
2004 Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427 320 325
26. Sanchez-San MartinC
LiuCY
KielianM
2009 Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends Microbiol 17 514 521
27. HarrisonSC
2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698
28. KielianM
ReyFA
2006 Virus membrane fusion proteins: more than one way to make a hairpin. Nat Rev Micro 4 67 76
29. Sanchez-San MartinC
SosaH
KielianM
2008 A stable prefusion intermediate of the alphavirus fusion protein reveals critical features of class II membrane fusion. Cell Host Microbe 4 600 608
30. LiaoM
Sanchez-San MartinC
ZhengA
KielianM
2010 In vitro reconstitution reveals key intermediate states of trimer formation by the dengue virus membrane fusion protein. J Virol 84 5730 5740
31. ParoutisP
TouretN
GrinsteinS
2004 The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 19 207 215
32. WenglerG
1989 Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol 63 2521 2526
33. StadlerK
AllisonSL
SchalichJ
HeinzFX
1997 Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71 8475 8481
34. LiL
LokSM
YuIM
ZhangY
KuhnRJ
2008 The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319 1830 1834
35. YuIM
HoldawayHA
ChipmanPR
KuhnRJ
RossmannMG
2009 Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. J Virol 83 12101 12107
36. YuIM
ZhangW
HoldawayHA
LiL
KostyuchenkoVA
2008 Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319 1834 1837
37. LorenzIC
AllisonSL
HeinzFX
HeleniusA
2002 Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76 5480 5491
38. LinYJ
WuSC
2005 Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus. J Virol 79 8535 8544
39. IvyJ
NakanoE
ClementsD
2000 Subunit immunogenic composition against dengue infection. US Patent 6,165,477
40. JunjhonJ
LausumpaoM
SupasaS
NoisakranS
SongjaengA
2008 Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. J Virol 82 10776 10791
41. LiaoM
KielianM
2005 Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus-membrane fusion. J Cell Biol 171 111 120
42. DejnirattisaiW
JumnainsongA
OnsirisakulN
FittonP
VasanawathanaS
2010 Cross-reacting antibodies enhance dengue virus infection in humans. Science 328 745 748
43. KroschewskiH
SagripantiJL
DavidsonAD
2009 Identification of amino acids in the dengue virus type 2 envelope glycoprotein critical to virus infectivity. J Gen Virol 90 2457 2461
44. AllisonSL
StadlerK
MandlCW
KunzC
HeinzFX
1995 Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J Virol 69 5816 5820
45. LorenzIC
KartenbeckJ
MezzacasaA
AllisonSL
HeinzFX
2003 Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J Virol 77 4370 4382
46. HsiehSC
LiuIJ
KingCC
ChangGJ
WangWK
2008 A strong endoplasmic reticulum retention signal in the stem-anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology 374 338 350
47. CorverJ
OrtizA
AllisonSL
SchalichJ
HeinzFX
2000 Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 269 37 46
48. WangPG
KudelkoM
LoJ
SiuLY
KwokKT
2009 Efficient assembly and secretion of recombinant subviral particles of the four dengue serotypes using native prM and E proteins. PLoS ONE 4 e8325
49. LisovaO
HardyF
PetitV
BedouelleH
2007 Mapping to completeness and transplantation of a group-specific, discontinuous, neutralizing epitope in the envelope protein of dengue virus. J Gen Virol 88 2387 2397
50. ThullierP
LafayeP
MegretF
DeubelV
JouanA
1999 A recombinant Fab neutralizes dengue virus in vitro. J Biotechnol 69 183 190
51. CrillWD
ChangGJ
2004 Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol 78 13975 13986
52. KonishiE
MasonPW
1993 Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol 67 1672 1675
53. DemaurexN
FuruyaW
D'SouzaS
BonifacinoJS
GrinsteinS
1998 Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J Biol Chem 273 2044 2051
54. ZhangX
FugereM
DayR
KielianM
2003 Furin processing and proteolytic activation of Semliki Forest virus. J Virol 77 2981 2989
55. StiasnyK
AllisonSL
SchalichJ
HeinzFX
2002 Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J Virol 76 3784 3790
56. FritzR
StiasnyK
HeinzFX
2008 Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183 353 361
57. NelsonS
PoddarS
LinTY
PiersonTC
2009 Protonation of individual histidine residues is not required for the pH-dependent entry of west nile virus: evaluation of the “histidine switch” hypothesis. J Virol 83 12631 12635
58. SchmidtAG
YangPL
HarrisonSC
2010 Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog 6 e1000851
59. KaufmannB
ChipmanPR
HoldawayHA
JohnsonS
FremontDH
2009 Capturing a flavivirus pre-fusion intermediate. PLoS Pathog 5 e1000672
60. VashishthaM
PhalenT
MarquardtMT
RyuJS
NgAC
1998 A single point mutation controls the cholesterol dependence of Semliki Forest virus entry and exit. J Cell Biol 140 91 99
61. TaylorGM
HansonPI
KielianM
2007 Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding. J Virol 81 13631 13639
62. UmashankarM
Sanchez San MartinC
LiaoM
ReillyB
GuoA
2008 Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J Virol 82 9245 9253
63. ThomasJM
KlimstraWB
RymanKD
HeidnerHW
2003 Sindbis virus vectors designed to express a foreign protein as a cleavable component of the viral structural polyprotein. J Virol 77 5598 5606
64. StiasnyK
KiermayrS
HolzmannH
HeinzFX
2006 Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. JVirol 80 9557 9568
65. WangP
ChenJ
ZhengA
NieY
ShiX
2004 Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Comm 315 439 444
66. ChatterjeePK
VashishthaM
KielianM
2000 Biochemical consequences of a mutation that controls the cholesterol dependence of Semliki Forest virus fusion. J Virol 74 1623 1631
67. CassB
PhamPL
KamenA
DurocherY
2005 Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme. Protein Expr Purif 40 77 85
68. PuriB
PoloS
HayesCG
FalgoutB
2000 Construction of a full length infectious clone for dengue-1 virus Western Pacific,74 strain. Virus Genes 20 57 63
69. Chanel-VosC
KielianM
2004 A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion. J Virol 78 13543 13552
70. LiljeströmP
LusaS
HuylebroeckD
GaroffH
1991 In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J Virol 65 4107 4113
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 10
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why
- Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice
- Antimicrobial Peptides: Primeval Molecules or Future Drugs?
- Crystal Structure of DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems