#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry


In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.


Vyšlo v časopise: Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001168
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001168

Souhrn

In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.


Zdroje

1. EckertDM

KimPS

2001 Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70 777 810

2. LambRA

PatersonRG

JardetzkyTS

2006 Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 344 30 37

3. WhiteJM

DelosSE

BrecherM

SchornbergK

2008 Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43 189 219

4. SmithEC

PopaA

ChangA

MasanteC

DutchRE

2009 Viral entry mechanisms: the increasing diversity of paramyxovirus entry. Febs J 276 7217 7227

5. IorioRM

MelansonVR

MahonPJ

2009 Glycoprotein interactions in paramyxovirus fusion. Future Virol 4 335 351

6. MurrellM

PorottoM

WeberT

GreengardO

MosconaA

2003 Mutations in human parainfluenza virus type 3 HN causing increased receptor binding activity and resistance to the transition state sialic acid analog 4-GU-DANA (zanamivir). J Virol 77 309 317

7. PorottoM

MurrellM

GreengardO

MosconaA

2003 Triggering of human parainfluenza virus 3 fusion protein(F) by the hemagglutinin-neuraminidase (HN): an HN mutation diminishing the rate of F activation and fusion. J Virol 77 3647 3654

8. PorottoM

MurrellM

GreengardO

LawrenceM

McKimm-BreschkinJ

2004 Inhibition of parainfluenza type 3 and Newcastle disease virus hemagglutinin-neuraminidase receptor binding: Effect of receptor avidity and steric hindrance at the inhibitor binding sites. J Virol 78 13911 13919

9. PorottoM

MurrellM

GreengardO

DoctorL

MosconaA

2005 Influence of the human parainfluenza virus 3 attachment protein's neuraminidase activity on its capacity to activate the fusion protein. J Virol 79 2383 2392

10. PorottoM

FornabaioM

GreengardO

MurrellMT

KelloggGE

2006 Paramyxovirus receptor-binding molecules: engagement of one site on the hemagglutinin-neuraminidase protein modulates activity at the second site. J Virol 80 1204 1213

11. PalermoLM

PorottoM

GreengardO

MosconaA

2007 Fusion promotion by a paramyxovirus hemagglutinin-neuraminidase protein: pH modulation of receptor avidity of binding sites I and II. J Virol 81 9152 9161

12. PorottoM

FornabaioM

KelloggG

MosconaA

2007 A second receptor binding site on the human parainfluenza 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. J Virol 81 3216 3228

13. PorottoM

YokoyamaC

OreficeG

KimH-S

MosconaA

2009 Kinetic dependence of paramyxovirus entry inhibition. J Virol 83 6947 6951

14. WangL

HarcourtBH

YuM

TaminA

RotaPA

2001 Molecular biology of Hendra and Nipah viruses. Microbes Infect 3 279 287

15. MurrayK

SelleckP

HooperP

HyattA

GouldA

1995 A morbillivirus that caused fatal disease in horses and humans. Science 268 94 97

16. O'SullivanJD

AllworthAM

PatersonDL

SnowTM

BootsR

1997 Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 349 93 95

17. PlayfordEG

McCallB

SmithG

SlinkoV

AllenG

2010 Human hEndra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg Infect Dis 16 219 223

18. HarcourtBH

TaminA

KsiazekTG

RollinPE

AndersonLJ

2000 Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271 334 349

19. ChuaKB

BelliniWJ

RotaPA

HarcourtBH

TaminA

2000 Nipah virus: a recently emergent deadly paramyxovirus. Science 288 1432 1435

20. EnserinkM

2004 Emerging infectious diseases. Nipah virus (or a cousin) strikes again. Science 303 1121

21. ButlerD

2004 Fatal fruit bat virus sparks epidemics in southern Asia. Nature 429 7

22. HsuVP

HossainMJ

ParasharUD

AliMM

KsiazekTG

2004 Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10 2082 2087

23. HomairaN

RahmanM

HossainMJ

EpsteinJH

SultanaR

2010 Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol Infect 1 7

24. SejvarJJ

HossainJ

SahaSK

GurleyES

BanuS

2007 Long-term neurological and functional outcome in Nipah virus infection. Ann Neurol 62 235 242

25. WilliamsJV

HarrisPA

TollefsonSJ

Halburnt-RushLL

PingsterhausJM

2004 Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med 350 443 450

26. CollinsP

ChanockR

McIntoshK

1996 Parainfluenza viruses.

FieldsB

DMK

PMH

Fields Virology. 3rd Edition ed Philadelphia Lippincott-Raven Publishers 1205 1241

27. LoughlinGM

MosconaA

2006 The cell biology of acute childhood respiratory disease: therapeutic implications. Pediatr Clin North Am 53 929 959

28. GriffinDE

2010 Emergence and re-emergence of viral diseases of the central nervous system. Prog Neurobiol 91 95 101

29. WeissenhornW

HinzA

GaudinY

2007 Virus membrane fusion. FEBS Lett 581 2150 2155

30. WhiteJM

2007 The first family of cell-cell fusion. Dev Cell 12 667 668

31. MosconaA

PelusoRW

1991 Fusion properties of cells persistently infected with human parainfluenza virus type 3: Participation of hemagglutinin-neuraminidase in membrane fusion. J Virol 65 2773 2777

32. RapaportD

OvadiaM

ShaiY

1995 A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. Embo J 14 5524 5531

33. LambertDM

BarneyS

LambertAL

GuthrieK

MedinasR

1996 Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc Natl Acad Sci U S A 93 2186 2191

34. YaoQ

CompansRW

1996 Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology 223 103 112

35. BakerKA

DutchRE

LambRA

JardetzkyTS

1999 Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell 3 309 319

36. WildCT

ShugarsDC

GreenwellTK

McDanalCB

MatthewsTJ

1994 Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 91 9770 9774

37. LuM

BlacklowSC

KimPS

1995 A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2 1075 1082

38. JoshiSB

DutchRE

LambRA

1998 A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology 248 20 34

39. WildTF

BucklandR

1997 Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. J Gen Virol 78 (Pt 1) 107 111

40. YoungJK

HicksRP

WrightGE

MorrisonTG

1997 Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology 238 291 304

41. YoungJK

LiD

AbramowitzMC

MorrisonTG

1999 Interaction of peptides with sequences from the newcastle disease virus fusion protein heptad repeat regions. J Virol 73 5945 5956

42. PorottoM

DoctorL

CartaP

FornabaioM

GreengardO

2006 Inhibition of Hendra virus membrane fusion. Journal of Virology 80 9837 9849

43. PorottoM

YokoyamaC

PalermoLM

MungallB

AljofanM

2010 Viral entry inhibitors targeted to the membrane site of action. J Virol JVI.00135 00110

44. HarrisonSC

2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698

45. RussellCJ

KantorKL

JardetzkyTS

LambRA

2003 A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion. J Cell Biol 163 363 374

46. RussellCJ

JardetzkyTS

LambRA

2001 Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J 20 4024 4034

47. NetterRC

AmbergSM

BallietJW

BisconeMJ

VermeulenA

2004 Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate. J Virol 78 13430 13439

48. PorottoM

CartaP

DengY

KelloggG

WhittM

2007 Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. J Virol 81 10567 10574

49. LouZ

XuY

XiangK

SuN

QinL

2006 Crystal structures of Nipah and Hendra virus fusion core proteins. Febs J 273 4538 4547

50. LaskowskiRA

MossDS

ThorntonJM

1993 Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231 1049 1067

51. IngallinellaP

BianchiE

LadwaNA

WangY-J

HrinR

2009 Addition of a cholesterol group to an HIV-1 Peptide Fusion Inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci USA 106 5801 5806

52. KahleKM

StegerHK

RootMJ

2009 Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. PLoS Pathog 5 e1000674

53. PalermoL

PorottoM

YokoyamaC

PalmerS

MungallB

2009 Human parainfluenza virus infection of the airway epithelium: the viral hemagglutinin-neuraminidase regulates fusion protein activation and modulates infectivity. J Virol 83 6900 6908

54. ZhangL

PeeplesME

BoucherRC

CollinsPL

PicklesRJ

2002 Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 76 5654 5666

55. ZhangL

BukreyevA

ThompsonCI

WatsonB

PeeplesME

2005 Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J Virol 79 1113 1124

56. MosconaA

PorottoM

PalmerS

TaiC

AschenbrennerL

2010 A Recombinant Sialidase Fusion Protein Effectively Inhibits Human Parainfluenza Viral Infection In Vitro and In Vivo. J Infect Dis. 2010 Jul 15 202 2 234 41

57. YinHS

PatersonRG

WenX

LambRA

JardetzkyTS

2005 Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci U S A 102 9288 9293

58. PorottoM

GreengardO

PoltoratskaiaN

HorgaM-A

MosconaA

2001 Human parainfluenza virus type 3 HN-receptor interaction: the effect of 4-GU-DANA on a neuraminidase-deficient variant. Journal of Virology 76 7481 7488

59. GreengardO

PoltoratskaiaN

LeikinaE

ZimmerbergJ

MosconaA

2000 The anti-influenza virus agent 4-GU-DANA (Zanamivir) inhibits cell fusion mediated by human parainfluenza virus and influenza virus HA. J Virol 74 11108 11114

60. NiewieskS

PrinceG

2002 Diversifying animal models: the use of cotton rats (Sigmodon hispidus) in infectious diseases. Laboratory Animals 36 357 372

61. WongKT

GrosjeanI

BrissonC

BlanquierB

Fevre-MontangeM

2003 A golden hamster model for human acute Nipah virus infection. Am J Pathol 163 2127 2137

62. GuillaumeV

WongKT

LooiRY

Georges-CourbotMC

BarrotL

2009 Acute Hendra virus infection: Analysis of the pathogenesis and passive antibody protection in the hamster model. Virology 387 459 465

63. GuillaumeV

ContaminH

LothP

Georges-CourbotMC

LefeuvreA

2004 Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 78 834 840

64. BoulayF

DomsRW

WilsonI

HeleniusA

1987 The influenza hemagglutinin precursor as an acid-sensitive probe of the biosynthetic pathway. Embo J 6 2643 2650

65. MaisnerA

NeufeldJ

WeingartlH

2009 Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb Haemost 102 1014 1023

66. MungallBA

MiddletonD

CrameriG

BinghamJ

HalpinK

2006 Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 80 12293 12302

67. BossartKN

ZhuZ

MiddletonD

KlippelJ

CrameriG

2009 A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog 5 e1000642

68. ChuaKB

GohKJ

WongKT

KamarulzamanA

TanPS

1999 Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354 1257 1259

69. WongKT

ShiehWJ

KumarS

NorainK

AbdullahW

2002 Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 161 2153 2167

70. GuillaumeV

ContaminH

LothP

GrosjeanI

CourbotMC

2006 Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol 80 1972 1978

71. PorottoM

OreficeG

YokoyamaC

MungallB

RealubitR

2009 Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy. J Virol 83 5148 5155

72. ChongHT

KamarulzamanA

TanCT

GohKJ

ThayaparanT

2001 Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 49 810 813

73. ReuterD

Schneider-SchauliesJ

2010 Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol. 2010 Aug 199 3 261 71

74. MarianneauP

GuillaumeV

WongT

BadmanathanM

LooiRY

2010 Experimental infection of squirrel monkeys with nipah virus. Emerg Infect Dis 16 507 510

75. Geisbert TWD-DK

HickeyAC

SmithMA

ChanY-P

WangL

MattapallilJJ

GeisbertJB

BossartKN

BroderCC

2010 Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection. PLoS One

76. SingerEJ

Valdes-SueirasM

ComminsD

LevineA

Neurologic presentations of AIDS. Neurol Clin 28 253 275

77. PriceRW

ParhamR

KrollJL

WringSA

BakerB

2008 Enfuvirtide cerebrospinal fluid (CSF) pharmacokinetics and potential use in defining CSF HIV-1 origin. Antivir Ther 13 369 374

78. MarrP

WalmsleyS

2008 Reassessment of enfuvirtide's role in the management of HIV-1 infection. Expert Opin Pharmacother 9 2349 2362

79. KunkelTA

RobertsJD

ZakourRA

1987 Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154 367 382

80. EdelhochH

1967 Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6 1948 1954

81. OtwinowskiZ

MinorW

1997 Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol 276 307 326

82. McCoyAJ

Grosse-KunstleveRW

AdamsPD

WinnMD

StoroniLC

2007 Phaser crystallographic software. J Appl Crystallogr 40 658 674

83. LamzinVS

WilsonKS

1993 Automated refinement of protein models. Acta Crystallogr D 49 129 149

84. JonesTA

ZouJY

CowanSW

Kjeldgaard

1991 Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47 (Pt 2) 110 119

85. MurshudovGN

VaginAA

DodsonEJ

1997 Refinement of macromolecular structures by the maximum-likehood method. Acta Crystallogr D 53 240 255

86. SchomakerV

TruebloodKN

1998 Correlation of internal torsional motion with overall molecular motion in crystals. Acta Crystallogr B 54 507 514

87. PottertonE

BriggsP

TurkenburgM

DodsonE

2003 A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59 1131 1137

88. ChenYH

YangJT

ChauKH

1974 Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 13 3350 3359

89. CantorC

SchimmelP

1980 Biophysical Chemistry. III New York Freeman and Co. Vol

90. JohnsonML

CorreiaJJ

YphantisDA

HalvorsonHR

1981 Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J 36 575 588

91. LaueTM

ShahBD

RidgewayTM

PelletierSL

1992 Computer-aided interpretation of analytical sedimentation data for proteins.

HardingSE

RoweAJ

HortonJC

Analytical Ultracentrifugation in Biochemistry and Polymer Science Cambridge: Royal Society of Chemistry 90 125

92. Levin PerlmanS

JordanM

BrossmerR

GreengardO

MosconaA

1999 The use of a quantitative fusion assay to evaluate HN-receptor interaction for human parainfluenza virus type 3. Virology 265 57 65

93. TakadaA

RobisonC

GotoH

SanchezA

MurtiKG

1997 A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94 14764 14769

94. NegreteOA

LevroneyEL

AguilarHC

Bertolotti-CiarletA

NazarianR

2005 EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436 401 405

95. MoosmannP

RusconiS

1996 Alpha complementation of LacZ in mammalian cells. Nucleic Acids Res 24 1171 1172

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#