Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.
Vyšlo v časopise:
Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001168
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001168
Souhrn
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.
Zdroje
1. EckertDM
KimPS
2001 Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70 777 810
2. LambRA
PatersonRG
JardetzkyTS
2006 Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 344 30 37
3. WhiteJM
DelosSE
BrecherM
SchornbergK
2008 Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43 189 219
4. SmithEC
PopaA
ChangA
MasanteC
DutchRE
2009 Viral entry mechanisms: the increasing diversity of paramyxovirus entry. Febs J 276 7217 7227
5. IorioRM
MelansonVR
MahonPJ
2009 Glycoprotein interactions in paramyxovirus fusion. Future Virol 4 335 351
6. MurrellM
PorottoM
WeberT
GreengardO
MosconaA
2003 Mutations in human parainfluenza virus type 3 HN causing increased receptor binding activity and resistance to the transition state sialic acid analog 4-GU-DANA (zanamivir). J Virol 77 309 317
7. PorottoM
MurrellM
GreengardO
MosconaA
2003 Triggering of human parainfluenza virus 3 fusion protein(F) by the hemagglutinin-neuraminidase (HN): an HN mutation diminishing the rate of F activation and fusion. J Virol 77 3647 3654
8. PorottoM
MurrellM
GreengardO
LawrenceM
McKimm-BreschkinJ
2004 Inhibition of parainfluenza type 3 and Newcastle disease virus hemagglutinin-neuraminidase receptor binding: Effect of receptor avidity and steric hindrance at the inhibitor binding sites. J Virol 78 13911 13919
9. PorottoM
MurrellM
GreengardO
DoctorL
MosconaA
2005 Influence of the human parainfluenza virus 3 attachment protein's neuraminidase activity on its capacity to activate the fusion protein. J Virol 79 2383 2392
10. PorottoM
FornabaioM
GreengardO
MurrellMT
KelloggGE
2006 Paramyxovirus receptor-binding molecules: engagement of one site on the hemagglutinin-neuraminidase protein modulates activity at the second site. J Virol 80 1204 1213
11. PalermoLM
PorottoM
GreengardO
MosconaA
2007 Fusion promotion by a paramyxovirus hemagglutinin-neuraminidase protein: pH modulation of receptor avidity of binding sites I and II. J Virol 81 9152 9161
12. PorottoM
FornabaioM
KelloggG
MosconaA
2007 A second receptor binding site on the human parainfluenza 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. J Virol 81 3216 3228
13. PorottoM
YokoyamaC
OreficeG
KimH-S
MosconaA
2009 Kinetic dependence of paramyxovirus entry inhibition. J Virol 83 6947 6951
14. WangL
HarcourtBH
YuM
TaminA
RotaPA
2001 Molecular biology of Hendra and Nipah viruses. Microbes Infect 3 279 287
15. MurrayK
SelleckP
HooperP
HyattA
GouldA
1995 A morbillivirus that caused fatal disease in horses and humans. Science 268 94 97
16. O'SullivanJD
AllworthAM
PatersonDL
SnowTM
BootsR
1997 Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 349 93 95
17. PlayfordEG
McCallB
SmithG
SlinkoV
AllenG
2010 Human hEndra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg Infect Dis 16 219 223
18. HarcourtBH
TaminA
KsiazekTG
RollinPE
AndersonLJ
2000 Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271 334 349
19. ChuaKB
BelliniWJ
RotaPA
HarcourtBH
TaminA
2000 Nipah virus: a recently emergent deadly paramyxovirus. Science 288 1432 1435
20. EnserinkM
2004 Emerging infectious diseases. Nipah virus (or a cousin) strikes again. Science 303 1121
21. ButlerD
2004 Fatal fruit bat virus sparks epidemics in southern Asia. Nature 429 7
22. HsuVP
HossainMJ
ParasharUD
AliMM
KsiazekTG
2004 Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10 2082 2087
23. HomairaN
RahmanM
HossainMJ
EpsteinJH
SultanaR
2010 Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol Infect 1 7
24. SejvarJJ
HossainJ
SahaSK
GurleyES
BanuS
2007 Long-term neurological and functional outcome in Nipah virus infection. Ann Neurol 62 235 242
25. WilliamsJV
HarrisPA
TollefsonSJ
Halburnt-RushLL
PingsterhausJM
2004 Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med 350 443 450
26. CollinsP
ChanockR
McIntoshK
1996 Parainfluenza viruses.
FieldsB
DMK
PMH
Fields Virology. 3rd Edition ed Philadelphia Lippincott-Raven Publishers 1205 1241
27. LoughlinGM
MosconaA
2006 The cell biology of acute childhood respiratory disease: therapeutic implications. Pediatr Clin North Am 53 929 959
28. GriffinDE
2010 Emergence and re-emergence of viral diseases of the central nervous system. Prog Neurobiol 91 95 101
29. WeissenhornW
HinzA
GaudinY
2007 Virus membrane fusion. FEBS Lett 581 2150 2155
30. WhiteJM
2007 The first family of cell-cell fusion. Dev Cell 12 667 668
31. MosconaA
PelusoRW
1991 Fusion properties of cells persistently infected with human parainfluenza virus type 3: Participation of hemagglutinin-neuraminidase in membrane fusion. J Virol 65 2773 2777
32. RapaportD
OvadiaM
ShaiY
1995 A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. Embo J 14 5524 5531
33. LambertDM
BarneyS
LambertAL
GuthrieK
MedinasR
1996 Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc Natl Acad Sci U S A 93 2186 2191
34. YaoQ
CompansRW
1996 Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology 223 103 112
35. BakerKA
DutchRE
LambRA
JardetzkyTS
1999 Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell 3 309 319
36. WildCT
ShugarsDC
GreenwellTK
McDanalCB
MatthewsTJ
1994 Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 91 9770 9774
37. LuM
BlacklowSC
KimPS
1995 A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2 1075 1082
38. JoshiSB
DutchRE
LambRA
1998 A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology 248 20 34
39. WildTF
BucklandR
1997 Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. J Gen Virol 78 (Pt 1) 107 111
40. YoungJK
HicksRP
WrightGE
MorrisonTG
1997 Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology 238 291 304
41. YoungJK
LiD
AbramowitzMC
MorrisonTG
1999 Interaction of peptides with sequences from the newcastle disease virus fusion protein heptad repeat regions. J Virol 73 5945 5956
42. PorottoM
DoctorL
CartaP
FornabaioM
GreengardO
2006 Inhibition of Hendra virus membrane fusion. Journal of Virology 80 9837 9849
43. PorottoM
YokoyamaC
PalermoLM
MungallB
AljofanM
2010 Viral entry inhibitors targeted to the membrane site of action. J Virol JVI.00135 00110
44. HarrisonSC
2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698
45. RussellCJ
KantorKL
JardetzkyTS
LambRA
2003 A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion. J Cell Biol 163 363 374
46. RussellCJ
JardetzkyTS
LambRA
2001 Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J 20 4024 4034
47. NetterRC
AmbergSM
BallietJW
BisconeMJ
VermeulenA
2004 Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate. J Virol 78 13430 13439
48. PorottoM
CartaP
DengY
KelloggG
WhittM
2007 Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. J Virol 81 10567 10574
49. LouZ
XuY
XiangK
SuN
QinL
2006 Crystal structures of Nipah and Hendra virus fusion core proteins. Febs J 273 4538 4547
50. LaskowskiRA
MossDS
ThorntonJM
1993 Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231 1049 1067
51. IngallinellaP
BianchiE
LadwaNA
WangY-J
HrinR
2009 Addition of a cholesterol group to an HIV-1 Peptide Fusion Inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci USA 106 5801 5806
52. KahleKM
StegerHK
RootMJ
2009 Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. PLoS Pathog 5 e1000674
53. PalermoL
PorottoM
YokoyamaC
PalmerS
MungallB
2009 Human parainfluenza virus infection of the airway epithelium: the viral hemagglutinin-neuraminidase regulates fusion protein activation and modulates infectivity. J Virol 83 6900 6908
54. ZhangL
PeeplesME
BoucherRC
CollinsPL
PicklesRJ
2002 Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 76 5654 5666
55. ZhangL
BukreyevA
ThompsonCI
WatsonB
PeeplesME
2005 Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J Virol 79 1113 1124
56. MosconaA
PorottoM
PalmerS
TaiC
AschenbrennerL
2010 A Recombinant Sialidase Fusion Protein Effectively Inhibits Human Parainfluenza Viral Infection In Vitro and In Vivo. J Infect Dis. 2010 Jul 15 202 2 234 41
57. YinHS
PatersonRG
WenX
LambRA
JardetzkyTS
2005 Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci U S A 102 9288 9293
58. PorottoM
GreengardO
PoltoratskaiaN
HorgaM-A
MosconaA
2001 Human parainfluenza virus type 3 HN-receptor interaction: the effect of 4-GU-DANA on a neuraminidase-deficient variant. Journal of Virology 76 7481 7488
59. GreengardO
PoltoratskaiaN
LeikinaE
ZimmerbergJ
MosconaA
2000 The anti-influenza virus agent 4-GU-DANA (Zanamivir) inhibits cell fusion mediated by human parainfluenza virus and influenza virus HA. J Virol 74 11108 11114
60. NiewieskS
PrinceG
2002 Diversifying animal models: the use of cotton rats (Sigmodon hispidus) in infectious diseases. Laboratory Animals 36 357 372
61. WongKT
GrosjeanI
BrissonC
BlanquierB
Fevre-MontangeM
2003 A golden hamster model for human acute Nipah virus infection. Am J Pathol 163 2127 2137
62. GuillaumeV
WongKT
LooiRY
Georges-CourbotMC
BarrotL
2009 Acute Hendra virus infection: Analysis of the pathogenesis and passive antibody protection in the hamster model. Virology 387 459 465
63. GuillaumeV
ContaminH
LothP
Georges-CourbotMC
LefeuvreA
2004 Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 78 834 840
64. BoulayF
DomsRW
WilsonI
HeleniusA
1987 The influenza hemagglutinin precursor as an acid-sensitive probe of the biosynthetic pathway. Embo J 6 2643 2650
65. MaisnerA
NeufeldJ
WeingartlH
2009 Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb Haemost 102 1014 1023
66. MungallBA
MiddletonD
CrameriG
BinghamJ
HalpinK
2006 Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 80 12293 12302
67. BossartKN
ZhuZ
MiddletonD
KlippelJ
CrameriG
2009 A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog 5 e1000642
68. ChuaKB
GohKJ
WongKT
KamarulzamanA
TanPS
1999 Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354 1257 1259
69. WongKT
ShiehWJ
KumarS
NorainK
AbdullahW
2002 Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 161 2153 2167
70. GuillaumeV
ContaminH
LothP
GrosjeanI
CourbotMC
2006 Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol 80 1972 1978
71. PorottoM
OreficeG
YokoyamaC
MungallB
RealubitR
2009 Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy. J Virol 83 5148 5155
72. ChongHT
KamarulzamanA
TanCT
GohKJ
ThayaparanT
2001 Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 49 810 813
73. ReuterD
Schneider-SchauliesJ
2010 Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol. 2010 Aug 199 3 261 71
74. MarianneauP
GuillaumeV
WongT
BadmanathanM
LooiRY
2010 Experimental infection of squirrel monkeys with nipah virus. Emerg Infect Dis 16 507 510
75. Geisbert TWD-DK
HickeyAC
SmithMA
ChanY-P
WangL
MattapallilJJ
GeisbertJB
BossartKN
BroderCC
2010 Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection. PLoS One
76. SingerEJ
Valdes-SueirasM
ComminsD
LevineA
Neurologic presentations of AIDS. Neurol Clin 28 253 275
77. PriceRW
ParhamR
KrollJL
WringSA
BakerB
2008 Enfuvirtide cerebrospinal fluid (CSF) pharmacokinetics and potential use in defining CSF HIV-1 origin. Antivir Ther 13 369 374
78. MarrP
WalmsleyS
2008 Reassessment of enfuvirtide's role in the management of HIV-1 infection. Expert Opin Pharmacother 9 2349 2362
79. KunkelTA
RobertsJD
ZakourRA
1987 Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154 367 382
80. EdelhochH
1967 Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6 1948 1954
81. OtwinowskiZ
MinorW
1997 Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol 276 307 326
82. McCoyAJ
Grosse-KunstleveRW
AdamsPD
WinnMD
StoroniLC
2007 Phaser crystallographic software. J Appl Crystallogr 40 658 674
83. LamzinVS
WilsonKS
1993 Automated refinement of protein models. Acta Crystallogr D 49 129 149
84. JonesTA
ZouJY
CowanSW
Kjeldgaard
1991 Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47 (Pt 2) 110 119
85. MurshudovGN
VaginAA
DodsonEJ
1997 Refinement of macromolecular structures by the maximum-likehood method. Acta Crystallogr D 53 240 255
86. SchomakerV
TruebloodKN
1998 Correlation of internal torsional motion with overall molecular motion in crystals. Acta Crystallogr B 54 507 514
87. PottertonE
BriggsP
TurkenburgM
DodsonE
2003 A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59 1131 1137
88. ChenYH
YangJT
ChauKH
1974 Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 13 3350 3359
89. CantorC
SchimmelP
1980 Biophysical Chemistry. III New York Freeman and Co. Vol
90. JohnsonML
CorreiaJJ
YphantisDA
HalvorsonHR
1981 Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J 36 575 588
91. LaueTM
ShahBD
RidgewayTM
PelletierSL
1992 Computer-aided interpretation of analytical sedimentation data for proteins.
HardingSE
RoweAJ
HortonJC
Analytical Ultracentrifugation in Biochemistry and Polymer Science Cambridge: Royal Society of Chemistry 90 125
92. Levin PerlmanS
JordanM
BrossmerR
GreengardO
MosconaA
1999 The use of a quantitative fusion assay to evaluate HN-receptor interaction for human parainfluenza virus type 3. Virology 265 57 65
93. TakadaA
RobisonC
GotoH
SanchezA
MurtiKG
1997 A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94 14764 14769
94. NegreteOA
LevroneyEL
AguilarHC
Bertolotti-CiarletA
NazarianR
2005 EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436 401 405
95. MoosmannP
RusconiS
1996 Alpha complementation of LacZ in mammalian cells. Nucleic Acids Res 24 1171 1172
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why
- Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice
- Antimicrobial Peptides: Primeval Molecules or Future Drugs?
- Crystal Structure of DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems