Gene Annotation and Drug Target Discovery in with a Tagged Transposon Mutant Collection
Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification.
Vyšlo v časopise:
Gene Annotation and Drug Target Discovery in with a Tagged Transposon Mutant Collection. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001140
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001140
Souhrn
Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification.
Zdroje
1. Nolla-SalasJ
Sitges-SerraA
Leon-GilC
Martinez-GonzalezJ
Leon-RegidorMA
1997 Candidemia in non-neutropenic critically ill patients: analysis of prognostic factors and assessment of systemic antifungal therapy. Study Group of Fungal Infection in the ICU. Intensive Care Med 23 23 30
2. PfallerMA
DiekemaDJ
2007 Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20 133 163
3. WisplinghoffH
BischoffT
TallentSM
SeifertH
WenzelRP
2004 Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39 309 317
4. AkinsRA
2005 An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43 285 318
5. HeckmanDS
GeiserDM
EidellBR
StaufferRL
KardosNL
2001 Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science 293 1129 1133
6. LottTJ
FundygaRE
KuykendallRJ
ArnoldJ
2005 The human commensal yeast, Candida albicans, has an ancient origin. Fungal Genetics and Biology 42 444 451
7. McCuskerJH
ClemonsKV
StevensDA
DavisRW
1994 Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136 1261 1269
8. BennettRJ
JohnsonAD
2003 Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 22 2505 2515
9. O'BrienKP
RemmM
SonnhammerEL
2005 Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33 D476 480
10. SkrzypekMS
ArnaudMB
CostanzoMC
InglisDO
ShahP
2010 New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucl Acids Res 38 D428 432
11. CostanzoM
GiaeverG
NislowC
AndrewsB
2006 Experimental approaches to identify genetic networks. Curr Opin Biotechnol 17 472 480
12. HoonS
St OngeRP
GiaeverG
NislowC
2008 Yeast chemical genomics and drug discovery: an update. Trends Pharmacol Sci 29 499 504
13. ShoemakerDD
LashkariDA
MorrisD
MittmannM
DavisRW
1996 Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 14 450 456
14. GiaeverG
ChuAM
NiL
ConnellyC
RilesL
2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418 387 391
15. SmithAM
HeislerLE
MellorJ
KaperF
ThompsonMJ
2009 Quantitative phenotyping via deep barcode sequencing. Genome Res
16. OoiSL
ShoemakerDD
BoekeJD
2003 DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 35 277 286
17. GiaeverG
FlahertyP
KummJ
ProctorM
NislowC
2004 Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101 793 798
18. HillenmeyerME
FungE
WildenhainJ
PierceSE
HoonS
2008 The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320 362 365
19. LumPY
ArmourCD
StepaniantsSB
CavetG
WolfMK
2004 Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116 121 137
20. ParsonsAB
LopezA
GivoniIE
WilliamsDE
GrayCA
2006 Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126 611 625
21. DavisDA
BrunoVM
LozaL
FillerSG
MitchellAP
2002 Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162 1573 1581
22. UhlMA
BieryM
CraigN
JohnsonAD
2003 Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. EMBO J 22 2668 2678
23. XuD
JiangB
KetelaT
LemieuxS
VeilletteK
2007 Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3 e92
24. JiangB
XuD
AlloccoJ
ParishC
DavisonJ
2008 PAP inhibitor with in vivo efficacy identified by Candida albicans genetic profiling of natural products. Chem Biol 15 363 374
25. Rodriguez-SuarezR
XuD
VeilletteK
DavisonJ
SillaotsS
2007 Mechanism-of-action determination of GMP synthase inhibitors and target validation in Candida albicans and Aspergillus fumigatus. Chem Biol 14 1163 1175
26. XuD
SillaotsS
DavisonJ
HuW
JiangB
2009 Chemical genetic profiling and characterization of small-molecule compounds that affect the biosynthesis of unsaturated fatty acids in Candida albicans. J Biol Chem 284 19754 19764
27. OhJ
FungE
PriceMN
DehalPS
DavisRW
2010 A universal TagModule collection for parallel genetic analysis of microorganisms. Nucleic Acids Res 38 e146
28. EnloeB
DiamondA
MitchellAP
2000 A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182 5730 5736
29. DeutschbauerAM
JaramilloDF
ProctorM
KummJ
HillenmeyerME
2005 Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169 1915 1925
30. HengartnerCJ
ThompsonCM
ZhangJ
ChaoDM
LiaoSM
1995 Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 9 897 910
31. ItohR
Saint-MarcC
ChaignepainS
KatahiraR
SchmitterJM
2003 The yeast ISN1 (YOR155c) gene encodes a new type of IMP-specific 5′-nucleotidase. BMC Biochem 4 4
32. PanX
YuanDS
XiangD
WangX
Sookhai-MahadeoS
2004 A robust toolkit for functional profiling of the yeast genome. Mol Cell 16 487 496
33. RoemerT
JiangB
DavisonJ
KetelaT
VeilletteK
2003 Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50 167 181
34. LeeW
St OngeRP
ProctorM
FlahertyP
JordanMI
2005 Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 1 e24
35. HuhWK
KangSO
2001 Characterization of the gene family encoding alternative oxidase from Candida albicans. Biochem J 356 595 604
36. ElsonSL
NobleSM
SolisNV
FillerSG
JohnsonAD
2009 An RNA Transport System in Candida albicans Regulates Hyphal Morphology and Invasive Growth. PLoS Genet 5 e1000664
37. ZaragozaO
RodriguezC
GancedoC
2000 Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J Bacteriol 182 320 326
38. MenonV
BernardisFD
CalderoneR
ChauhanN
2008 Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulence. FEMS Yeast Research 8 756 763
39. Garcia-SanchezS
AubertS
IraquiI
JanbonG
GhigoJM
2004 Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3 536 545
40. GiaeverG
ShoemakerDD
JonesTW
LiangH
WinzelerEA
1999 Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21 278 283
41. NichollsDG
FergusonSJ
2001 A standard and up-to-date textbook with a comprehensive introduction to membrane bioenergetics and the chemiosmotic theory. Bioenergetics 3 17 26
42. PeyrocheA
AntonnyB
RobineauS
AckerJ
CherfilsJ
1999 Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 3 275 285
43. LewisMJ
PelhamHRB
2002 A New Yeast Endosomal SNARE Related to Mammalian Syntaxin 8. Traffic 3 922 929
44. WapinskiI
PfefferA
FriedmanN
RegevA
2007 Natural history and evolutionary principles of gene duplication in fungi. Nature 449 54 61
45. CostanzoM
BaryshnikovaA
BellayJ
KimY
SpearED
2010 The genetic landscape of a cell. Science 327 425 431
46. WinzelerEA
ShoemakerDD
AstromoffA
LiangH
AndersonK
1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 901 906
47. VazquezN
WalshTJ
FriedmanD
ChanockSJ
LymanCA
1998 Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans. Infect Immun 66 145 150
48. JonesT
FederspielNA
ChibanaH
DunganJ
KalmanS
2004 The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101 7329 7334
49. HolmesAR
TsaoS
OngSW
LampingE
NiimiK
2006 Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 62 170 186
50. PadovanACB
ChavesGM
ColomboAL
BrionesMRS
2009 A novel allele of HWPI, isolated from a clinical strain of Candida albicans with defective hyphal growth and biofilm formation, has deletions of Gln/Pro and Ser/Thr repeats involved in cellular adhesion. Medical Mycology 47 824 835
51. GimenoCJ
LjungdahlPO
StylesCA
FinkGR
1992 Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS. Cell 68 1077 1090
52. LoHJ
KohlerJR
DiDomenicoB
LoebenbergD
CacciapuotiA
1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90 939 949
53. ForgacM
1999 Structure and properties of the vacuolar (H+)-ATPases. J Biol Chem 274 12951 12954
54. GoryshinIY
JendrisakJ
HoffmanLM
MeisR
ReznikoffWS
2000 Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18 97 100
55. WilsonRB
DavisD
MitchellAP
1999 Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions. J Bacteriol 181 1868 1874
56. KadoshD
JohnsonAD
2001 Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21 2496 2505
57. PierceSE
DavisRW
NislowC
GiaeverG
2007 Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2 2958 2974
58. ChauhanN
KruppaMD
2009 Standard growth media and common techniques for use with Candida albicans. Methods Mol Biol 499 197 201
59. PierceSE
FungEL
JaramilloDF
ChuAM
DavisRW
2006 A unique and universal molecular barcode array. Nat Methods 3 601 603
60. AlbertiS
GitlerAD
LindquistS
2007 A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24 913 919
61. HoCH
MagtanongL
BarkerSL
GreshamD
NishimuraS
2009 A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol 27 369 377
62. HoonS
SmithAM
WallaceIM
SureshS
MirandaM
2008 An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 4 498 506
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why
- Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice
- Antimicrobial Peptides: Primeval Molecules or Future Drugs?
- Crystal Structure of DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems