#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gene Annotation and Drug Target Discovery in with a Tagged Transposon Mutant Collection


Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification.


Vyšlo v časopise: Gene Annotation and Drug Target Discovery in with a Tagged Transposon Mutant Collection. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001140
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001140

Souhrn

Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification.


Zdroje

1. Nolla-SalasJ

Sitges-SerraA

Leon-GilC

Martinez-GonzalezJ

Leon-RegidorMA

1997 Candidemia in non-neutropenic critically ill patients: analysis of prognostic factors and assessment of systemic antifungal therapy. Study Group of Fungal Infection in the ICU. Intensive Care Med 23 23 30

2. PfallerMA

DiekemaDJ

2007 Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20 133 163

3. WisplinghoffH

BischoffT

TallentSM

SeifertH

WenzelRP

2004 Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39 309 317

4. AkinsRA

2005 An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43 285 318

5. HeckmanDS

GeiserDM

EidellBR

StaufferRL

KardosNL

2001 Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science 293 1129 1133

6. LottTJ

FundygaRE

KuykendallRJ

ArnoldJ

2005 The human commensal yeast, Candida albicans, has an ancient origin. Fungal Genetics and Biology 42 444 451

7. McCuskerJH

ClemonsKV

StevensDA

DavisRW

1994 Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136 1261 1269

8. BennettRJ

JohnsonAD

2003 Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 22 2505 2515

9. O'BrienKP

RemmM

SonnhammerEL

2005 Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33 D476 480

10. SkrzypekMS

ArnaudMB

CostanzoMC

InglisDO

ShahP

2010 New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucl Acids Res 38 D428 432

11. CostanzoM

GiaeverG

NislowC

AndrewsB

2006 Experimental approaches to identify genetic networks. Curr Opin Biotechnol 17 472 480

12. HoonS

St OngeRP

GiaeverG

NislowC

2008 Yeast chemical genomics and drug discovery: an update. Trends Pharmacol Sci 29 499 504

13. ShoemakerDD

LashkariDA

MorrisD

MittmannM

DavisRW

1996 Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 14 450 456

14. GiaeverG

ChuAM

NiL

ConnellyC

RilesL

2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418 387 391

15. SmithAM

HeislerLE

MellorJ

KaperF

ThompsonMJ

2009 Quantitative phenotyping via deep barcode sequencing. Genome Res

16. OoiSL

ShoemakerDD

BoekeJD

2003 DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 35 277 286

17. GiaeverG

FlahertyP

KummJ

ProctorM

NislowC

2004 Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101 793 798

18. HillenmeyerME

FungE

WildenhainJ

PierceSE

HoonS

2008 The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320 362 365

19. LumPY

ArmourCD

StepaniantsSB

CavetG

WolfMK

2004 Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116 121 137

20. ParsonsAB

LopezA

GivoniIE

WilliamsDE

GrayCA

2006 Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126 611 625

21. DavisDA

BrunoVM

LozaL

FillerSG

MitchellAP

2002 Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162 1573 1581

22. UhlMA

BieryM

CraigN

JohnsonAD

2003 Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. EMBO J 22 2668 2678

23. XuD

JiangB

KetelaT

LemieuxS

VeilletteK

2007 Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3 e92

24. JiangB

XuD

AlloccoJ

ParishC

DavisonJ

2008 PAP inhibitor with in vivo efficacy identified by Candida albicans genetic profiling of natural products. Chem Biol 15 363 374

25. Rodriguez-SuarezR

XuD

VeilletteK

DavisonJ

SillaotsS

2007 Mechanism-of-action determination of GMP synthase inhibitors and target validation in Candida albicans and Aspergillus fumigatus. Chem Biol 14 1163 1175

26. XuD

SillaotsS

DavisonJ

HuW

JiangB

2009 Chemical genetic profiling and characterization of small-molecule compounds that affect the biosynthesis of unsaturated fatty acids in Candida albicans. J Biol Chem 284 19754 19764

27. OhJ

FungE

PriceMN

DehalPS

DavisRW

2010 A universal TagModule collection for parallel genetic analysis of microorganisms. Nucleic Acids Res 38 e146

28. EnloeB

DiamondA

MitchellAP

2000 A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182 5730 5736

29. DeutschbauerAM

JaramilloDF

ProctorM

KummJ

HillenmeyerME

2005 Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169 1915 1925

30. HengartnerCJ

ThompsonCM

ZhangJ

ChaoDM

LiaoSM

1995 Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 9 897 910

31. ItohR

Saint-MarcC

ChaignepainS

KatahiraR

SchmitterJM

2003 The yeast ISN1 (YOR155c) gene encodes a new type of IMP-specific 5′-nucleotidase. BMC Biochem 4 4

32. PanX

YuanDS

XiangD

WangX

Sookhai-MahadeoS

2004 A robust toolkit for functional profiling of the yeast genome. Mol Cell 16 487 496

33. RoemerT

JiangB

DavisonJ

KetelaT

VeilletteK

2003 Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50 167 181

34. LeeW

St OngeRP

ProctorM

FlahertyP

JordanMI

2005 Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 1 e24

35. HuhWK

KangSO

2001 Characterization of the gene family encoding alternative oxidase from Candida albicans. Biochem J 356 595 604

36. ElsonSL

NobleSM

SolisNV

FillerSG

JohnsonAD

2009 An RNA Transport System in Candida albicans Regulates Hyphal Morphology and Invasive Growth. PLoS Genet 5 e1000664

37. ZaragozaO

RodriguezC

GancedoC

2000 Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J Bacteriol 182 320 326

38. MenonV

BernardisFD

CalderoneR

ChauhanN

2008 Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulence. FEMS Yeast Research 8 756 763

39. Garcia-SanchezS

AubertS

IraquiI

JanbonG

GhigoJM

2004 Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3 536 545

40. GiaeverG

ShoemakerDD

JonesTW

LiangH

WinzelerEA

1999 Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21 278 283

41. NichollsDG

FergusonSJ

2001 A standard and up-to-date textbook with a comprehensive introduction to membrane bioenergetics and the chemiosmotic theory. Bioenergetics 3 17 26

42. PeyrocheA

AntonnyB

RobineauS

AckerJ

CherfilsJ

1999 Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 3 275 285

43. LewisMJ

PelhamHRB

2002 A New Yeast Endosomal SNARE Related to Mammalian Syntaxin 8. Traffic 3 922 929

44. WapinskiI

PfefferA

FriedmanN

RegevA

2007 Natural history and evolutionary principles of gene duplication in fungi. Nature 449 54 61

45. CostanzoM

BaryshnikovaA

BellayJ

KimY

SpearED

2010 The genetic landscape of a cell. Science 327 425 431

46. WinzelerEA

ShoemakerDD

AstromoffA

LiangH

AndersonK

1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 901 906

47. VazquezN

WalshTJ

FriedmanD

ChanockSJ

LymanCA

1998 Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans. Infect Immun 66 145 150

48. JonesT

FederspielNA

ChibanaH

DunganJ

KalmanS

2004 The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101 7329 7334

49. HolmesAR

TsaoS

OngSW

LampingE

NiimiK

2006 Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 62 170 186

50. PadovanACB

ChavesGM

ColomboAL

BrionesMRS

2009 A novel allele of HWPI, isolated from a clinical strain of Candida albicans with defective hyphal growth and biofilm formation, has deletions of Gln/Pro and Ser/Thr repeats involved in cellular adhesion. Medical Mycology 47 824 835

51. GimenoCJ

LjungdahlPO

StylesCA

FinkGR

1992 Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS. Cell 68 1077 1090

52. LoHJ

KohlerJR

DiDomenicoB

LoebenbergD

CacciapuotiA

1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90 939 949

53. ForgacM

1999 Structure and properties of the vacuolar (H+)-ATPases. J Biol Chem 274 12951 12954

54. GoryshinIY

JendrisakJ

HoffmanLM

MeisR

ReznikoffWS

2000 Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18 97 100

55. WilsonRB

DavisD

MitchellAP

1999 Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions. J Bacteriol 181 1868 1874

56. KadoshD

JohnsonAD

2001 Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21 2496 2505

57. PierceSE

DavisRW

NislowC

GiaeverG

2007 Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2 2958 2974

58. ChauhanN

KruppaMD

2009 Standard growth media and common techniques for use with Candida albicans. Methods Mol Biol 499 197 201

59. PierceSE

FungEL

JaramilloDF

ChuAM

DavisRW

2006 A unique and universal molecular barcode array. Nat Methods 3 601 603

60. AlbertiS

GitlerAD

LindquistS

2007 A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24 913 919

61. HoCH

MagtanongL

BarkerSL

GreshamD

NishimuraS

2009 A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol 27 369 377

62. HoonS

SmithAM

WallaceIM

SureshS

MirandaM

2008 An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 4 498 506

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#