High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing
We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system.
Vyšlo v časopise:
High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001146
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001146
Souhrn
We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system.
Zdroje
1. StraussJH
StraussEG
1994 The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58 491 562
2. KaariainenL
AholaT
2002 Functions of alphavirus nonstructural proteins in RNA replication. Prog Nucleic Acid Res Mol Biol 71 187 222
3. SawickiDL
SawickiSG
1994 Alphavirus positive and negative strand RNA synthesis and the role of polyproteins in formation of viral replication complexes. Arch Virol Suppl 9 393 405
4. GriffinD
2007 Alphaviruses.
KnipeDM
HowleyPM
Fields Virology, 5th edition: Lippincott, Williams, and Wilkins
5. AholaT
AhlquistP
1999 Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a. J Virol 73 10061 10069
6. AholaT
LaakkonenP
VihinenH
KaariainenL
1997 Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol 71 392 397
7. AholaT
KaariainenL
1995 Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A 92 507 511
8. MiS
DurbinR
HuangHV
RiceCM
StollarV
1989 Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology 170 385 391
9. MiS
StollarV
1991 Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli. Virology 184 423 427
10. SawickiDL
SawickiSG
1985 Functional analysis of the A complementation group mutants of Sindbis HR virus. Virology 144 20 34
11. Gomez de CedronM
EhsaniN
MikkolaML
GarciaJA
KaariainenL
1999 RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett 448 19 22
12. VasiljevaL
MeritsA
AuvinenP
KaariainenL
2000 Identification of a novel function of the alphavirus capping apparatus. RNA 5′-triphosphatase activity of Nsp2. J Biol Chem 275 17281 17287
13. RikkonenM
PeranenJ
KaariainenL
1994 ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol 68 5804 5810
14. GolubtsovA
KaariainenL
CaldenteyJ
2006 Characterization of the cysteine protease domain of Semliki Forest virus replicase protein nsP2 by in vitro mutagenesis. FEBS Lett 580 1502 1508
15. DingMX
SchlesingerMJ
1989 Evidence that Sindbis virus NSP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology 171 280 284
16. HardyWR
StraussJH
1989 Processing the nonstructural polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J Virol 63 4653 4664
17. StraussEG
De GrootRJ
LevinsonR
StraussJH
1992 Identification of the active site residues in the nsP2 proteinase of Sindbis virus. Virology 191 932 940
18. FrolovaEI
FayzulinRZ
CookSH
GriffinDE
RiceCM
2002 Roles of nonstructural protein nsP2 and Alpha/Beta interferons in determining the outcome of Sindbis virus infection. Journal of Virology 76 11254 11264
19. GarmashovaN
GorchakovR
FrolovaE
FrolovI
2006 Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J Virol 80 5686 5696
20. PeranenJ
RikkonenM
LiljestromP
KaariainenL
1990 Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J Virol 64 1888 1896
21. HahnYS
GrakouiA
RiceCM
StraussEG
StraussJH
1989 Mapping of RNA- temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4. J Virol 63 1194 1202
22. KooninEV
DoljaVV
1993 Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28 375 430
23. O'ReillyEK
KaoCC
1998 Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252 287 303
24. KamerG
ArgosP
1984 Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12 7269 7282
25. LaStarzaMW
LemmJA
RiceCM
1994 Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus-strand and subgenomic RNA synthesis. J Virol 68 5781 5791
26. WangYF
SawickiSG
SawickiDL
1994 Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J Virol 68 6466 6475
27. ShirakoY
StraussJH
1994 Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol 68 1874 1885
28. SaikatenduKS
JosephJS
SubramanianV
ClaytonT
GriffithM
2005 Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1″-phosphate dephosphorylation by a conserved domain of nsP3. Structure 13 1665 1675
29. EgloffMP
MaletH
PuticsA
HeinonenM
DutartreH
2006 Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J Virol 80 8493 8502
30. MaletH
DalleK
BremondN
TocqueF
BlangyS
2006 Expression, purification and crystallization of the SARS-CoV macro domain. Acta Crystallograph Sect F Struct Biol Cryst Commun 62 405 408
31. PuticsA
FilipowiczW
HallJ
GorbalenyaAE
ZiebuhrJ
2005 ADP-ribose-1″-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 79 12721 12731
32. MaletH
CoutardB
JamalS
DutartreH
PapageorgiouN
2009 The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. Journal of Virology 83 6534 6545
33. LiGP
La StarzaMW
HardyWR
StraussJH
RiceCM
1990 Phosphorylation of Sindbis virus nsP3 in vivo and in vitro. Virology 179 416 427
34. VihinenH
SaarinenJ
2000 Phosphorylation site analysis of Semliki forest virus nonstructural protein 3. J Biol Chem 275 27775 27783
35. LastarzaMW
GrakouiA
RiceCM
1994 Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. Virology 202 224 232
36. RussoAT
WhiteMA
WatowichSJ
2006 The crystal structure of the Venezuelan equine encephalitis alphavirus nsP2 protease. Structure 14 1449 1458
37. BartonDJ
SawickiSG
SawickiDL
1988 Demonstration in vitro of temperature-sensitive elongation of RNA in Sindbis virus mutant ts6. J Virol 62 3597 3602
38. HahnCS
StraussEG
StraussJH
1985 Sequence analysis of three Sindbis virus mutants temperature-sensitive in the capsid protein autoprotease. Proc Natl Acad Sci U S A 82 4648 4652
39. HahnYS
StraussEG
StraussJH
1989 Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. J Virol 63 3142 3150
40. HardyWR
HahnYS
de GrootRJ
StraussEG
StraussJH
1990 Synthesis and processing of the nonstructural polyproteins of several temperature-sensitive mutants of Sindbis virus. Virology 177 199 208
41. KeranenS
KaariainenL
1979 Functional defects of RNA-negative temperature-sensitive mutants of Sindbis and Semliki Forest viruses. J Virol 32 19 29
42. SawickiD
BarkhimerDB
SawickiSG
RiceCM
SchlesingerS
1990 Temperature sensitive shut-off of alphavirus minus strand RNA synthesis maps to a nonstructural protein, nsP4. Virology 174 43 52
43. SawickiDL
SawickiSG
1993 A second nonstructural protein functions in the regulation of alphavirus negative-strand RNA synthesis. J Virol 67 3605 3610
44. StraussEG
LenchesEM
StraussJH
1976 Mutants of sindbis virus. I. Isolation and partial characterization of 89 new temperature-sensitive mutants. Virology 74 154 168
45. LemmJA
RiceCM
1993 Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription. J Virol 67 1916 1926
46. VarjakM
ZusinaiteE
MeritsA
2010 Novel Functions of the Alphavirus Nonstructural Protein nsP3 C-Terminal Region. J Virol 84 2352 2364
47. DeI
Fata-HartleyC
SawickiSG
SawickiDL
2003 Functional analysis of nsP3 phosphoprotein mutants of Sindbis virus. J Virol 77 13106 13116
48. ArumugaswamiV
RemenyiR
KanagavelV
SueEY
Ngoc HoT
2008 High-resolution functional profiling of hepatitis C virus genome. PLoS Pathog 4 e1000182
49. ArumugaswamiV
SitaparaR
HwangS
SongMJ
HoTN
2009 High-resolution functional profiling of a gammaherpesvirus RTA locus in the context of the viral genome. J Virol 83 1811 1822
50. PushkoP
ParkerM
LudwigGV
DavisNL
JohnstonRE
1997 Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239 389 401
51. GriederFB
DavisNL
AronsonJF
CharlesPC
SellonDC
1995 Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. Virology 206 994 1006
52. AltschulSF
MaddenTL
SchafferAA
ZhangJ
ZhangZ
1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 10
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why
- Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice
- Antimicrobial Peptides: Primeval Molecules or Future Drugs?
- Crystal Structure of DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems