#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing


We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system.


Vyšlo v časopise: High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001146
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001146

Souhrn

We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system.


Zdroje

1. StraussJH

StraussEG

1994 The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58 491 562

2. KaariainenL

AholaT

2002 Functions of alphavirus nonstructural proteins in RNA replication. Prog Nucleic Acid Res Mol Biol 71 187 222

3. SawickiDL

SawickiSG

1994 Alphavirus positive and negative strand RNA synthesis and the role of polyproteins in formation of viral replication complexes. Arch Virol Suppl 9 393 405

4. GriffinD

2007 Alphaviruses.

KnipeDM

HowleyPM

Fields Virology, 5th edition: Lippincott, Williams, and Wilkins

5. AholaT

AhlquistP

1999 Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a. J Virol 73 10061 10069

6. AholaT

LaakkonenP

VihinenH

KaariainenL

1997 Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol 71 392 397

7. AholaT

KaariainenL

1995 Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A 92 507 511

8. MiS

DurbinR

HuangHV

RiceCM

StollarV

1989 Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology 170 385 391

9. MiS

StollarV

1991 Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli. Virology 184 423 427

10. SawickiDL

SawickiSG

1985 Functional analysis of the A complementation group mutants of Sindbis HR virus. Virology 144 20 34

11. Gomez de CedronM

EhsaniN

MikkolaML

GarciaJA

KaariainenL

1999 RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett 448 19 22

12. VasiljevaL

MeritsA

AuvinenP

KaariainenL

2000 Identification of a novel function of the alphavirus capping apparatus. RNA 5′-triphosphatase activity of Nsp2. J Biol Chem 275 17281 17287

13. RikkonenM

PeranenJ

KaariainenL

1994 ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol 68 5804 5810

14. GolubtsovA

KaariainenL

CaldenteyJ

2006 Characterization of the cysteine protease domain of Semliki Forest virus replicase protein nsP2 by in vitro mutagenesis. FEBS Lett 580 1502 1508

15. DingMX

SchlesingerMJ

1989 Evidence that Sindbis virus NSP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology 171 280 284

16. HardyWR

StraussJH

1989 Processing the nonstructural polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J Virol 63 4653 4664

17. StraussEG

De GrootRJ

LevinsonR

StraussJH

1992 Identification of the active site residues in the nsP2 proteinase of Sindbis virus. Virology 191 932 940

18. FrolovaEI

FayzulinRZ

CookSH

GriffinDE

RiceCM

2002 Roles of nonstructural protein nsP2 and Alpha/Beta interferons in determining the outcome of Sindbis virus infection. Journal of Virology 76 11254 11264

19. GarmashovaN

GorchakovR

FrolovaE

FrolovI

2006 Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J Virol 80 5686 5696

20. PeranenJ

RikkonenM

LiljestromP

KaariainenL

1990 Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J Virol 64 1888 1896

21. HahnYS

GrakouiA

RiceCM

StraussEG

StraussJH

1989 Mapping of RNA- temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4. J Virol 63 1194 1202

22. KooninEV

DoljaVV

1993 Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28 375 430

23. O'ReillyEK

KaoCC

1998 Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252 287 303

24. KamerG

ArgosP

1984 Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12 7269 7282

25. LaStarzaMW

LemmJA

RiceCM

1994 Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus-strand and subgenomic RNA synthesis. J Virol 68 5781 5791

26. WangYF

SawickiSG

SawickiDL

1994 Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J Virol 68 6466 6475

27. ShirakoY

StraussJH

1994 Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol 68 1874 1885

28. SaikatenduKS

JosephJS

SubramanianV

ClaytonT

GriffithM

2005 Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1″-phosphate dephosphorylation by a conserved domain of nsP3. Structure 13 1665 1675

29. EgloffMP

MaletH

PuticsA

HeinonenM

DutartreH

2006 Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J Virol 80 8493 8502

30. MaletH

DalleK

BremondN

TocqueF

BlangyS

2006 Expression, purification and crystallization of the SARS-CoV macro domain. Acta Crystallograph Sect F Struct Biol Cryst Commun 62 405 408

31. PuticsA

FilipowiczW

HallJ

GorbalenyaAE

ZiebuhrJ

2005 ADP-ribose-1″-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 79 12721 12731

32. MaletH

CoutardB

JamalS

DutartreH

PapageorgiouN

2009 The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. Journal of Virology 83 6534 6545

33. LiGP

La StarzaMW

HardyWR

StraussJH

RiceCM

1990 Phosphorylation of Sindbis virus nsP3 in vivo and in vitro. Virology 179 416 427

34. VihinenH

SaarinenJ

2000 Phosphorylation site analysis of Semliki forest virus nonstructural protein 3. J Biol Chem 275 27775 27783

35. LastarzaMW

GrakouiA

RiceCM

1994 Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. Virology 202 224 232

36. RussoAT

WhiteMA

WatowichSJ

2006 The crystal structure of the Venezuelan equine encephalitis alphavirus nsP2 protease. Structure 14 1449 1458

37. BartonDJ

SawickiSG

SawickiDL

1988 Demonstration in vitro of temperature-sensitive elongation of RNA in Sindbis virus mutant ts6. J Virol 62 3597 3602

38. HahnCS

StraussEG

StraussJH

1985 Sequence analysis of three Sindbis virus mutants temperature-sensitive in the capsid protein autoprotease. Proc Natl Acad Sci U S A 82 4648 4652

39. HahnYS

StraussEG

StraussJH

1989 Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. J Virol 63 3142 3150

40. HardyWR

HahnYS

de GrootRJ

StraussEG

StraussJH

1990 Synthesis and processing of the nonstructural polyproteins of several temperature-sensitive mutants of Sindbis virus. Virology 177 199 208

41. KeranenS

KaariainenL

1979 Functional defects of RNA-negative temperature-sensitive mutants of Sindbis and Semliki Forest viruses. J Virol 32 19 29

42. SawickiD

BarkhimerDB

SawickiSG

RiceCM

SchlesingerS

1990 Temperature sensitive shut-off of alphavirus minus strand RNA synthesis maps to a nonstructural protein, nsP4. Virology 174 43 52

43. SawickiDL

SawickiSG

1993 A second nonstructural protein functions in the regulation of alphavirus negative-strand RNA synthesis. J Virol 67 3605 3610

44. StraussEG

LenchesEM

StraussJH

1976 Mutants of sindbis virus. I. Isolation and partial characterization of 89 new temperature-sensitive mutants. Virology 74 154 168

45. LemmJA

RiceCM

1993 Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription. J Virol 67 1916 1926

46. VarjakM

ZusinaiteE

MeritsA

2010 Novel Functions of the Alphavirus Nonstructural Protein nsP3 C-Terminal Region. J Virol 84 2352 2364

47. DeI

Fata-HartleyC

SawickiSG

SawickiDL

2003 Functional analysis of nsP3 phosphoprotein mutants of Sindbis virus. J Virol 77 13106 13116

48. ArumugaswamiV

RemenyiR

KanagavelV

SueEY

Ngoc HoT

2008 High-resolution functional profiling of hepatitis C virus genome. PLoS Pathog 4 e1000182

49. ArumugaswamiV

SitaparaR

HwangS

SongMJ

HoTN

2009 High-resolution functional profiling of a gammaherpesvirus RTA locus in the context of the viral genome. J Virol 83 1811 1822

50. PushkoP

ParkerM

LudwigGV

DavisNL

JohnstonRE

1997 Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239 389 401

51. GriederFB

DavisNL

AronsonJF

CharlesPC

SellonDC

1995 Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. Virology 206 994 1006

52. AltschulSF

MaddenTL

SchafferAA

ZhangJ

ZhangZ

1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#