#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Both α2,3- and α2,6-Linked Sialic Acids on O-Linked Glycoproteins Act as Functional Receptors for Porcine Sapovirus


Although enteropathogenic sapoviruses and noroviruses are leading causes of acute gastroenteritis in both humans and animals, the study of viral pathogenesis and immunity of these ubiquitous pathogens has been hampered due to the lack of a fully permissive cell culture system. Porcine sapovirus Cowden strain provides a suitable system that can be used to identify the molecular mechanisms of viral pathogenesis. Previous studies have shown that carbohydrates and glycolipids play important roles in the attachment of members of the Caliciviridae; histo-blood group antigens (HBGAs) are used by Norovirus genogroups I to IV, as well as members of the Lagovirus, and Recovirus genera, whereas terminal sialic acid is recognized as a receptor for feline calicivirus and murine norovirus. To date, however, the role of carbohydrates in the life cycle of sapoviruses has remained largely unknown. We found that porcine sapovirus binds to susceptible host cells through both α2,3- and α2,6-linked terminal sialic acids which are attached to O-linked glycoproteins. These efforts, findings and insights will significantly contribute to a better understanding of the sapovirus life cycle.


Vyšlo v časopise: Both α2,3- and α2,6-Linked Sialic Acids on O-Linked Glycoproteins Act as Functional Receptors for Porcine Sapovirus. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004172
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004172

Souhrn

Although enteropathogenic sapoviruses and noroviruses are leading causes of acute gastroenteritis in both humans and animals, the study of viral pathogenesis and immunity of these ubiquitous pathogens has been hampered due to the lack of a fully permissive cell culture system. Porcine sapovirus Cowden strain provides a suitable system that can be used to identify the molecular mechanisms of viral pathogenesis. Previous studies have shown that carbohydrates and glycolipids play important roles in the attachment of members of the Caliciviridae; histo-blood group antigens (HBGAs) are used by Norovirus genogroups I to IV, as well as members of the Lagovirus, and Recovirus genera, whereas terminal sialic acid is recognized as a receptor for feline calicivirus and murine norovirus. To date, however, the role of carbohydrates in the life cycle of sapoviruses has remained largely unknown. We found that porcine sapovirus binds to susceptible host cells through both α2,3- and α2,6-linked terminal sialic acids which are attached to O-linked glycoproteins. These efforts, findings and insights will significantly contribute to a better understanding of the sapovirus life cycle.


Zdroje

1. Green KY (2007) Caliciviridae: The Noroviruses. In: Knipe DM, Howley PM, eds. Fields Virology, 5th edition. Philadelphia: Lippincott Willisams and Wilkins.

2. NyströmK, Le Gall-ReculéG, GrassiP, AbrantesJ, Ruvoën-ClouetN, et al. (2011) Histo-blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner. PLoS Pathog 7: e1002188.

3. RadfordAD, CoyneKP, DawsonS, PorterCJ, GaskellRM (2007) Feline calicivirus. Vet Res 38: 319–335.

4. StuartAD, BrownTD (2007) Alpha2,6-linked sialic acid acts as a receptor for Feline calicivirus. J Gen Virol 88: 177–186.

5. TanM, JiangX (2010) Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS Pathog 6: e1000983.

6. ChangKO, SosnovtsevSV, BelliotG, KimY, SaifLJ, et al. (2004) Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci USA 101: 8733–8738.

7. PatelMM, WiddowsonMA, GlassRI, AkazawaK, VinjeJ, et al. (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14: 1224–1231.

8. HansmanGS, OkaT, KatayamaK, TakedaN (2007) Human sapoviruses: genetic diversity, recombination, and classification. Re Med Virol 17: 133–141.

9. Ruvoen-ClouetN, GaniereJP, Andre-FontaineG, BlanchardD, Le PenduJ (2000) Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J Virol 74: 11950–11954.

10. ZakhourM, Ruvoen-ClouetN, CharpilienneA, LangpapB, PoncetD, et al. (2009) The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathog 5: e1000504.

11. TaubeS, PerryJW, YetmingK, PatelSP, AubleH, et al. (2009) Gangloside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J Virol 83: 4092–4101.

12. FarkasT, CrossRW, HargittE3rd, LercheNW, MorrowAL, et al. (2010) Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses. J Virol 84: 8617–8625.

13. MakinoA, ShimojimaM, MiyazawaT, KatoK, TohyaY, et al. (2006) Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 80: 4482–4490.

14. Shirato-HorikoshiH, OgawaS, WakitaT, TakedaN (2007) Hansman (2007) Binding activity of norovirus and sapovirus to histo-blood group antigens. Arch Virol 152: 457–461.

15. Bank-WolfBR, KönigM, ThielHJ (2010) Zoonotic aspects of infections with noroviruses and sapoviruses. Vet Microbiol 140: 204–212.

16. MesquitaJR, CostantiniVP, CannonJL, LinSC, NascimentoMS, et al. (2013) Presence of antibodies against genogroup VI norovirus in humans. Virol J 10: 176.

17. WiddowsonM, RockxB, ScheppR, van der PoelWHM, VinjeJ, et al. (2005) Detection of serum antibodies to bovine norovirus in veterinarians and the general population in the Netherlands. J Med Virol 76: 119–128.

18. MattisonK, ShuklaA, CookA, PollariF, FriendshipR, et al. (2007) Human noroviruses in swine and cattle. Emerg Infect Dis 13: 1184–1188.

19. SouzaM, AzevedoMS, JungK, CheethamS, SaifLJ (2008) Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J Virol 82: 1777–1786.

20. Helenius A (2007) Virus Entry and Uncoating. In: Knipe DM, Howley PM, eds. Fields Virology, 5th edition. Philadelphia: Lippincott Willams and Wilkins.

21. WoolhouseMEJ (2002) Population biology of emerging and re-emerging pathogens. Trends Microbiol 10: S3–S7.

22. Martínez-BarragánJ, AngelRM (2001) Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75: 7818–7827.

23. WoodwardMP, YoungWWJr, BloodgoodRA (1985) Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods 78: 143–153.

24. HafensteinS, BowmanVD, ChipmanPR, KellyCMB, LinF, et al. (2007) Interactionof decay-accelerating factor with coxsakievirus B3. J Virol 81: 12927–12935.

25. OlofssonS, BergströmT (2005) Glycoconjugateglycans as viral receptors. Ann Med 37: 154–172.

26. HuangP, XiaM, TanM, ZhongW, WeiC, et al. (2012) Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 86: 4833–4843.

27. TanM, ZhongW, SongD, ThorntonS, JiangX (2004) E. coli-expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. J Med Virol 74: 641–649.

28. HanagataG, GasaS, SakoF, MakitaA (1990) Human blood group A and H glycolipids in porcine plasma. Evidence for acquisition of the erythrocyte antigens from plasma. FEBS Lett 261: 312–314.

29. GuoM, HayesJ, ChoKO, ParwaniAV, LucasLM, et al. (2001) Comparative pathogenesis of tissue culture-adapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J Virol 75: 9239–9251.

30. HuangP, FarkasT, MarionneauS, ZhongW, Ruvoen-ClouetN, et al. (2003) Noroviruses bind to human ABO, lewis, and secretor histo-blood group antigens: Identification of 4 distinct strain-specific patterns. J Infect Dis 188: 19–31.

31. MatrosovichMN, MatrosovichTY, GrayT, RobertsNA, KlenkHD (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA 101: 4620–4624.

32. VarkiA (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446: 1023–1029.

33. SinibaldiL, GoldoniP, SegantiL, SupertiF, TsiangH, OrsiN (1985) Gangliosides in early interactions between vesicular stomatitis virus and CER cells. Microbiologica 8: 355–365.

34. TaubeS, PerryJW, McGreevyE, YetmingK, PerkinsC, et al. (2012) Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain-dependent manner. J Virol 86: 5584–5593.

35. HorzinekMC (1973) Comparative aspects of togaviruses. J Gen Virol 20: 87–103.

36. McLeodGM, WigginsHS (1968) Bile-salts in small intestinal contents after ileal resection and in other malabsorption syndromes. Lancet 1: 873–876.

37. OhtsuboK, MarthJD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126: 855–867.

38. LopezS, AriasCF (2006) Early steps in rotavirus cell entry. Curr Top Microbiol Immunol 309: 39–66.

39. BhellaD, GathererD, ChaudhryY, PinkR, GoodfellowIG (2008) Structural insights into calicivirus attachment and uncoating. J Virol 82(16): 8051–8058.

40. OssiboffRJ, ZhouY, LightfootPJ, PrasadBV, ParkerJS (2010) Conformational changes in the capsid of a calicivirus upon interaction with its functional receptor. J Virol 84(11): 5550–5564.

41. BhellaD, GoodfellowIG (2011) The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1. J Virol 85(21): 11381–11390.

42. WaltersRW, YiSM, KeshavjeeS, BrownKE, WelshMJ, et al. (2001) Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 276: 20610–20616.

43. GenzelY, DietzschC, RappE, SchwarzerJ, ReichlU (2010) MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol 88: 461–475.

44. ParkSH, SaifLJ, JeongC, LimGK, ParkSI, et al. (2006) Molecular characterization of novel G5 bovine rotavirus strains. J Clin Microbiol 44: 4101–4112.

45. LiX, ShouW, XingX, HuangL, TianL, et al. (2013) Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes Coxsackievirus B3-induced apoptosis in HeLa cells. Cell Death Dis 4: e803–809.

46. RyuMS, JungEH, ChoKO, KangSY (2012) Expression of porcine sapovirus VP1 gene and VP1 specific monoclonal antibody production. Hybridoma 31: 155–162.

47. HuangP, FarkasT, MarionneauS, ZhongW, Ruvoen-ClouetN, et al. (2003) Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 188: 19–31.

48. HuangP, FarkasT, ZhongW, TanM, ThorntonS, et al. (2005) Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79: 6714–6722.

49. FukushimaK, TakahashiT, TakaguchiM, UeyamaH, ItoS, et al. (2011) Plaque formation assay for human parainfluenza virus type 1. Biol Pharm Bull 34: 996–1000.

50. MatrosovichM, MatrosovichT, GartenW, KlenkHD (2006) New low-viscosity overlay medium for viral plaque assays. Virol J 3: 63.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#