#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Progressive Proximal-to-Distal Reduction in Expression of the Tight Junction Complex in Colonic Epithelium of Virally-Suppressed HIV+ Individuals


While antiretroviral therapy for HIV-infected patients is remarkably effective in suppressing viral replication and preventing progression to AIDS, treated patients still have a shorter life expectancy due to increased risks for non-AIDS associated morbidities. Recent data showed that these complications are associated with chronic systemic inflammation, and it is hypothesized that bacterial products breaching the intestinal barrier may cause the inflammation. It is known that HIV induces persistent intestinal mucosal immunodeficiency, but evidence for structural damage to the intestinal epithelium is lacking in the antiretroviral-treated patient population. Here, we characterized the intestinal epithelial damage that leads to increased intestinal permeability in this population. We found that while the colonic epithelial layer is intact microscopically, intercellular tight junctions (TJ) are down-regulated at the transcriptional and translational levels. We observed further that TJ transcripts progressively decrease along the proximal-to-distal HIV gut. Concurrent alterations in the levels of non-TJ epithelial transcripts suggest that epithelial cells in the HIV gut are transcriptionally dysregulated. Our data provide evidence that TJ disruption is a novel mechanism for increasing colonic permeability in the antiretroviral-treated HIV patient, which may then result in systemic inflammation and associated complications.


Vyšlo v časopise: Progressive Proximal-to-Distal Reduction in Expression of the Tight Junction Complex in Colonic Epithelium of Virally-Suppressed HIV+ Individuals. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004198
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004198

Souhrn

While antiretroviral therapy for HIV-infected patients is remarkably effective in suppressing viral replication and preventing progression to AIDS, treated patients still have a shorter life expectancy due to increased risks for non-AIDS associated morbidities. Recent data showed that these complications are associated with chronic systemic inflammation, and it is hypothesized that bacterial products breaching the intestinal barrier may cause the inflammation. It is known that HIV induces persistent intestinal mucosal immunodeficiency, but evidence for structural damage to the intestinal epithelium is lacking in the antiretroviral-treated patient population. Here, we characterized the intestinal epithelial damage that leads to increased intestinal permeability in this population. We found that while the colonic epithelial layer is intact microscopically, intercellular tight junctions (TJ) are down-regulated at the transcriptional and translational levels. We observed further that TJ transcripts progressively decrease along the proximal-to-distal HIV gut. Concurrent alterations in the levels of non-TJ epithelial transcripts suggest that epithelial cells in the HIV gut are transcriptionally dysregulated. Our data provide evidence that TJ disruption is a novel mechanism for increasing colonic permeability in the antiretroviral-treated HIV patient, which may then result in systemic inflammation and associated complications.


Zdroje

1. HazenbergMD, StuartJW, OttoSA, BorleffsJC, BoucherCA, et al. (2000) T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95: 249–255.

2. LawnSD, ButeraST, FolksTM (2001) Contribution of Immune Activation to the Pathogenesis and Transmission of Human Immunodeficiency Virus Type 1 Infection. Clin Microbiol Rev 14: 753–777 doi:10.1128/CMR.14.4.753-777.2001

3. De BoerRJ, MohriH, HoDD, PerelsonAS (2003) Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques. J Immunol 170: 2479–2487.

4. GiorgiJV, HultinLE, McKeatingJA, JohnsonTD, OwensB, et al. (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179: 859–870 doi:10.1086/314660

5. DeeksSG (2004) Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104: 942–947 doi:10.1182/blood-2003-09-3333

6. LongeneckerCT, FunderburgNT, JiangY, DebanneS, StorerN, et al. (2013) Markers of inflammation and CD8 T-cell activation, but not monocyte activation, are associated with subclinical carotid artery disease in HIV-infected individuals. HIV Med 14: 385–390 doi:10.1111/hiv.12013

7. RossAC, RizkN, O'RiordanMA, DograV, Bejjani ElD, et al. (2009) Relationship between Inflammatory Markers, Endothelial Activation Markers, and Carotid Intima-Media Thickness in HIV-Infected Patients Receiving Antiretroviral Therapy. Clin Infect Dis 49: 1119–1127 doi:10.1086/605578

8. MangiliA, PolakJF, QuachLA, GerriorJ, WankeCA (2011) Markers of atherosclerosis and inflammation and mortality in patients with HIV infection. Atherosclerosis 214: 468–473 doi:10.1016/j.atherosclerosis.2010.11.013

9. FrenchAL, EvansCT, AgnielDM, CohenMH, PetersM, et al. (2013) Microbial translocation and liver disease progression in women coinfected with HIV and hepatitis C virus. J Infect Dis 208: 679–689 doi:10.1093/infdis/jit225

10. MarchettiG, NastaP, BaiF, GattiF, BellistrìGM, et al. (2012) Circulating sCD14 Is Associated with Virological Response to Pegylated-Interferon-Alpha/Ribavirin Treatment in HIV/HCV Co-Infected Patients. PLoS ONE 7: e32028 doi:10.1371/journal.pone.0032028.s003

11. BalagopalA, PhilpFH, AstemborskiJ, BlockTM, MehtaA, et al. (2008) Human Immunodeficiency Virus-Related Microbial Translocation and Progression of Hepatitis C. Gastroenterology 135: 226–233 doi:10.1053/j.gastro.2008.03.022

12. AncutaP, KamatA, KunstmanKJ, KimE-Y, AutissierP, et al. (2008) Microbial Translocation Is Associated with Increased Monocyte Activation and Dementia in AIDS Patients. PLoS ONE 3: e2516 doi:10.1371/journal.pone.0002516.t003

13. DeeksSG, PhillipsAN (2009) HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ 338: a3172–a3172 doi:10.1136/bmj.a3172

14. LohseN, HansenA-BE, PedersenG, KronborgG, GerstoftJ, et al. (2007) Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med 146: 87–95.

15. BrenchleyJM, PriceDA, SchackerTW, AsherTE, SilvestriG, et al. (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12: 1365–1371 doi:10.1038/nm1511

16. JiangW, LedermanMM, HuntP, SiegSF, HaleyK, et al. (2009) Plasma Levels of Bacterial DNA Correlate with Immune Activation and the Magnitude of Immune Restoration in Persons with Antiretroviral-Treated HIV Infection. J Infect Dis 199: 1177–1185 doi:10.1086/597476

17. BaroncelliS, GalluzzoCM, PirilloMF, ManciniMG, WeimerLE, et al. (2009) Microbial translocation is associated with residual viral replication in HAART-treated HIV+ subjects with <50copies/ml HIV-1 RNA. J Clin Virol 46: 367–370 doi:10.1016/j.jcv.2009.09.011

18. BrenchleyJM, PriceDA, DouekDC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7: 235–239 doi:10.1038/ni1316

19. CaradonnaL, AmatiL, MagroneT, PellegrinoNM, JirilloE, et al. (2000) Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res 6: 205–214.

20. FunderburgNT, Stubblefield ParkSR, SungHC, HardyG, ClagettB, et al. (2013) Circulating CD4(+) and CD8(+) T cells are activated in inflammatory bowel disease and are associated with plasma markers of inflammation. Immunology 140: 87–97 doi:10.1111/imm.12114

21. SchietromaM, CarleiF, CappelliS, AmicucciG (2006) Intestinal Permeability and Systemic Endotoxemia After Laparotomic or Laparoscopic Cholecystectomy. Ann Surg 243: 359–363 doi:10.1097/01.sla.0000201455.89037.f6

22. SchietromaM, CarleiF, CappelliS, PescosolidoA, LygidakisNJ, et al. (2007) Effects of cholecystectomy (laparoscopic versus open) on PMN-elastase. Hepatogastroenterology 54: 342–345.

23. CookeKR, OlkiewiczK, EricksonN, FerraraJLM (2002) The role of endotoxin and the innate immune response in the pathophysiology of acute graft versus host disease. J Endotoxin Res 8: 441–448 doi:10.1179/096805102125001046

24. HillGR, CrawfordJM, CookeKR, BrinsonYS, PanL, et al. (1997) Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90: 3204–3213.

25. KlattNR, HarrisLD, VintonCL, SungH, BriantJA, et al. (2010) Compromised gastrointestinal integrity in pigtail macaques is associated with increased microbial translocation, immune activation, and IL-17 production in the absence of SIV infection. Mucosal Immunol 3: 387–398 doi:10.1038/mi.2010.14

26. MowatAM, VineyJL (1997) The anatomical basis of intestinal immunity. Immunol Rev 156: 145–166.

27. BrenchleyJM, SchackerTW, RuffLE, PriceDA, TaylorJH, et al. (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200: 749–759 doi:10.1084/jem.20040874

28. GuadalupeM, ReayE, SankaranS, PrindivilleT, FlammJ, et al. (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77: 11708–11717.

29. SchneiderT, JahnHU, SchmidtW, RieckenEO, ZeitzM, et al. (1995) Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Berlin Diarrhea/Wasting Syndrome Study Group. Gut 37: 524–529.

30. CecchinatoV, TrindadeCJ, LaurenceA, HeraudJM, BrenchleyJM, et al. (2008) Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunol 1: 279–288 doi:10.1038/mi.2008.14

31. KimCJ, NazliA, RojasOL, ChegeD, AlidinaZ, et al. (2012) A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol 1–11 doi:10.1038/mi.2012.72

32. CicconeEJ, ReadSW, MannonPJ, YaoMD, HodgeJN, et al. (2010) Cycling of gut mucosal CD4+ T cells decreases after prolonged anti-retroviral therapy and is associated with plasma LPS levels. Mucosal Immunol 3: 172–181 doi:10.1038/mi.2009.129

33. EppleH-J, AllersK, TrögerH, KühlA, ErbenU, et al. (2010) Acute HIV Infection Induces Mucosal Infiltration With CD4+ and CD8+ T Cells, Epithelial Apoptosis, and a Mucosal Barrier Defect. Gastroenterology 139: 1289–1300.e2 doi:10.1053/j.gastro.2010.06.065

34. SankaranS, GeorgeMD, ReayE, GuadalupeM, FlammJ, et al. (2008) Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J Virol 82: 538–545 doi:10.1128/JVI.01449-07

35. GeorgeMD, SankaranS, ReayE, GelliAC, DandekarS (2003) High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection. Virology 312: 84–94.

36. BrenchleyJM, DouekDC (2008) HIV infection and the gastrointestinal immune system. Mucosal Immunol 1: 23–30 doi:10.1038/mi.2007.1

37. KeatingJ, BjarnasonI, SomasundaramS, MacphersonA, FrancisN, et al. (1995) Intestinal absorptive capacity, intestinal permeability and jejunal histology in HIV and their relation to diarrhoea. Gut 37: 623–629.

38. ObinnaFC, CookG, BealeT, DaveS, CunninghamD, et al. (1995) Comparative assessment of small intestinal and colonic permeability in HIV-infected homosexual men. AIDS 9: 1009–1016.

39. StockmannM, SchmitzH, FrommM, SchmidtW, PauliG, et al. (2000) Mechanisms of epithelial barrier impairment in HIV infection. Ann N Y Acad Sci 915: 293–303.

40. Stubblefield ParkS, SungH, FunderburgN, MeddingsJ, LevineA (2012) Increased small intestinal and colonic permeability, and loss of villus tip surface area, correlates with microbial translocation and immune activation in HIV. J Immunol 188: 71.5.

41. EstesJD, HarrisLD, KlattNR, TabbB, PittalugaS, et al. (2010) Damaged Intestinal Epithelial Integrity Linked to Microbial Translocation in Pathogenic Simian Immunodeficiency Virus Infections. PLoS Pathog 6: e1001052 doi:10.1371/journal.ppat.1001052.t001

42. HellemansJ, MortierG, De PaepeA, SpelemanF, VandesompeleJ (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8: R19 doi:10.1186/gb-2007-8-2-r19

43. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57: 289–300.

44. ArrietaMC (2006) Alterations in intestinal permeability. Gut 55: 1512–1520 doi:10.1136/gut.2005.085373

45. TurnerJR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9: 799–809 doi:10.1038/nri2653

46. SchulzkeJ-D, GünzelD, JohnLJ, FrommM (2012) Perspectives on tight junction research. Ann N Y Acad Sci 1257: 1–19 doi:10.1111/j.1749-6632.2012.06485.x

47. AmashehS, MilatzS, KrugSM, MarkovAG, GünzelD, et al. (2009) Tight Junction Proteins as Channel Formers and Barrier Builders. Ann N Y Acad Sci 1165: 211–219 doi:10.1111/j.1749-6632.2009.04439.x

48. OwensDW, LaneEB (2004) Keratin mutations and intestinal pathology. J Pathol 204: 377–385 doi:10.1002/path.1646

49. GalloRL, HooperLV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12: 503–516 doi:10.1038/nri3228

50. MengW, TakeichiM (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1: a002899–a002899 doi:10.1101/cshperspect.a002899

51. DeeksSG, TracyR, DouekDC (2013) Systemic Effects of Inflammation on Health during Chronic HIV Infection. Immunity 39: 633–645 doi:10.1016/j.immuni.2013.10.001

52. MarchettiG, TincatiC, SilvestriG (2013) Microbial Translocation in the Pathogenesis of HIV Infection and AIDS. Clin Microbiol Rev 26: 2–18 doi:10.1128/CMR.00050-12

53. EppleH-J, SchneiderT, TroegerH, KunkelD, AllersK, et al. (2009) Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 58: 220–227 doi:10.1136/gut.2008.150425

54. SmithAJ, SchackerTW, ReillyCS, HaaseAT (2010) A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection. J Acquir Immune Defic Syndr 55: 306–315 doi:10.1097/QAI.0b013e3181ecfeca

55. VeazeyRS (1998) Gastrointestinal Tract as a Major Site of CD4+ T Cell Depletion and Viral Replication in SIV Infection. Science 280: 427–431 doi:10.1126/science.280.5362.427

56. BrenchleyJM, PaiardiniM, KnoxKS, AsherAI, CervasiB, et al. (2008) Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112: 2826–2835 doi:10.1182/blood-2008-05-159301

57. OlssonJ, PolesM, SpetzAL, ElliottJ, HultinL, et al. (2000) Human immunodeficiency virus type 1 infection is associated with significant mucosal inflammation characterized by increased expression of CCR5, CXCR4, and beta-chemokines. J Infect Dis 182: 1625–1635 doi:10.1086/317625

58. McGowanI, ElliottJ, FuerstM, TaingP, BoscardinJ, et al. (2004) Increased HIV-1 mucosal replication is associated with generalized mucosal cytokine activation. J Acquir Immune Defic Syndr 37: 1228–1236.

59. HoferU, SchlaepferE, BaenzigerS, NischangM, RegenassS, et al. (2010) Inadequate Clearance of Translocated Bacterial Products in HIV-Infected Humanized Mice. PLoS Pathog 6: e1000867 doi:10.1371/journal.ppat.1000867.s004

60. LiQ, EstesJD, DuanL, JessurunJ, PambuccianS, et al. (2008) Simian Immunodeficiency Virus–Induced Intestinal Cell Apoptosis Is the Underlying Mechanism of the Regenerative Enteropathy of Early Infection. J Infect Dis 197: 420–429 doi:10.1086/525046

61. SankaranS, GuadalupeM, ReayE, GeorgeMD, FlammJ, et al. (2005) Gut mucosal T cell responses and gene expression correlate with protection against disease in long-term HIV-1-infected nonprogressors. Proc Natl Acad Sci USA 102: 9860–9865 doi:10.1073/pnas.0503463102

62. NazliA, ChanO, Dobson-BelaireWN, OuelletM, TremblayMJ, et al. (2010) Exposure to HIV-1 Directly Impairs Mucosal Epithelial Barrier Integrity Allowing Microbial Translocation. PLoS Pathog 6: e1000852 doi:10.1371/journal.ppat.1000852.t001

63. BatmanPA, MillerAR, ForsterSM, HarrisJR, PinchingAJ, et al. (1989) Jejunal enteropathy associated with human immunodeficiency virus infection: quantitative histology. Journal of Clinical Pathology 42: 275–281 doi:10.1136/jcp.42.3.275

64. SandlerNG, WandH, RoqueA, LawM, NasonMC, et al. (2011) Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection. J Infect Dis 203: 780–790 doi:10.1093/infdis/jiq118

65. MavignerM, CazabatM, DuboisM, L'FaqihiF-E, RequenaM, et al. (2011) Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals. J Clin Invest 122: 62–69 doi:10.1172/JCI59011DS1

66. HuntPW (2012) HIV and Inflammation: Mechanisms and Consequences. Curr HIV/AIDS Rep 9: 139–147 doi:10.1007/s11904-012-0118-8

67. PelsersMMAL, NamiotZ, KisielewskiW, NamiotA, JanuszkiewiczM, et al. (2003) Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clinical Biochemistry 36: 529–535 doi:10.1016/S0009-9120(03)00096-1

68. LaPointeLC, DunneR, BrownGS, WorthleyDL, MolloyPL, et al. (2008) Map of differential transcript expression in the normal human large intestine. Physiological Genomics 33: 50–64 doi:10.1152/physiolgenomics.00185.2006

69. GlebovOK, RodriguezLM, NakaharaK, JenkinsJ, CliattJ, et al. (2003) Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomarkers Prev 12: 755–762.

70. IacopettaB (2002) Are there two sides to colorectal cancer? Int J Cancer 101: 403–408 doi:10.1002/ijc.10635

71. BenedixF, SchmidtU, MroczkowskiP, GastingerI, LippertH, et al. (2011) Colon carcinoma. European Journal of Surgical Oncology 37: 134–139 doi:10.1016/j.ejso.2010.12.004

72. StearnsJC, LynchMDJ, SenadheeraDB, TenenbaumHC, GoldbergMB, et al. (2011) Bacterial biogeography of the human digestive tract. Sci Rep 1 doi:10.1038/srep00170

73. LiX, LeBlancJ, TruongA, VuthooriR, ChenSS, et al. (2011) A Metaproteomic Approach to Study Human-Microbial Ecosystems at the Mucosal Luminal Interface. PLoS ONE 6: e26542 doi:10.1371/journal.pone.0026542.t001

74. YamauchiM, LochheadP, MorikawaT, HuttenhowerC, ChanAT, et al. (2012) Colorectal cancer: a tale of two sides or a continuum? Gut 61: 794–797 doi:10.1136/gutjnl-2012-302014

75. YamauchiM, MorikawaT, KuchibaA, ImamuraY, QianZR, et al. (2012) Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61: 847–854 doi:10.1136/gutjnl-2011-300865

76. BrenchleyJM, DouekDC (2012) Microbial Translocation Across the GI Tract. Annu Rev Immunol 30: 149–173 doi:10.1146/annurev-immunol-020711-075001

77. HandleySA, ThackrayLB, ZhaoG, PrestiR, MillerAD, et al. (2012) Pathogenic Simian Immunodeficiency Virus Infection Is Associatedwith Expansion of the Enteric Virome. Cell 151: 253–266 doi:10.1016/j.cell.2012.09.024

78. LozuponeCA, LiM, CampbellTB, FloresSC, LindermanD, et al. (2013) Alterations in the Gut Microbiota Associated with HIV-1 Infection. Cell Host and Microbe 14: 329–339 doi:10.1016/j.chom.2013.08.006

79. EckburgPB (2005) Diversity of the Human Intestinal Microbial Flora. Science 308: 1635–1638 doi:10.1126/science.1110591

80. EllisCL, MaZ-M, MannSK, LiC-S, WuJ, et al. (2011) Molecular characterization of stool microbiota in HIV-infected subjects by panbacterial and order-level 16S ribosomal DNA (rDNA) quantification and correlations with immune activation. J Acquir Immune Defic Syndr 57: 363–370 doi:10.1097/QAI.0b013e31821a603c

81. Vujkovic-CvijinI, DunhamRM, IwaiS, MaherMC, AlbrightRG, et al. (2013) Dysbiosis of the Gut Microbiota Is Associated with HIV Disease Progression and Tryptophan Catabolism. Sci Transl Med 5: 193ra91–193ra91 doi:10.1126/scitranslmed.3006438

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#