Structural Insights into SraP-Mediated Adhesion to Host Cells
Staphylococcus aureus is an important pathogen that causes a range of human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. The increasing resistance of S. aureus to most of the current antibiotics emphasizes the need to develop new approaches to control staphylococcal infections. As a surface-exposed serine-rich repeat glycoprotein (SRRP), S. aureus SraP is involved in the pathogenesis of infective endocarditis via its ligand-binding region (BR) adhering to human platelets. However, little is known about how SraP interacts with its host receptor(s). Through structural and functional analyses of the BR domain, we have discovered a specific binding of SraP to N-acetylneuraminic acid (Neu5Ac), in agreement with a recent report of the trisaccharide ligand of SraP. Further mutagenesis analysis showed that SraP binding to Neu5Ac and the trisaccharide promotes S. aureus adhesion to and invasion into host epithelial cells. These findings increase our knowledge of surface protein mediated interaction of S. aureus with host epithelial cells.
Vyšlo v časopise:
Structural Insights into SraP-Mediated Adhesion to Host Cells. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004169
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004169
Souhrn
Staphylococcus aureus is an important pathogen that causes a range of human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. The increasing resistance of S. aureus to most of the current antibiotics emphasizes the need to develop new approaches to control staphylococcal infections. As a surface-exposed serine-rich repeat glycoprotein (SRRP), S. aureus SraP is involved in the pathogenesis of infective endocarditis via its ligand-binding region (BR) adhering to human platelets. However, little is known about how SraP interacts with its host receptor(s). Through structural and functional analyses of the BR domain, we have discovered a specific binding of SraP to N-acetylneuraminic acid (Neu5Ac), in agreement with a recent report of the trisaccharide ligand of SraP. Further mutagenesis analysis showed that SraP binding to Neu5Ac and the trisaccharide promotes S. aureus adhesion to and invasion into host epithelial cells. These findings increase our knowledge of surface protein mediated interaction of S. aureus with host epithelial cells.
Zdroje
1. LizcanoA, SanchezCJ, OrihuelaCJ (2012) A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis. Mol Oral Microbiol 27: 257–269.
2. RamboarinaS, GarnettJA, ZhouM, LiY, PengZ, et al. (2010) Structural insights into serine-rich fimbriae from Gram-positive bacteria. J Biol. Chem 285: 32446–32457.
3. PyburnTM, BensingBA, XiongYQ, MelanconBJ, TomasiakTM, et al. (2011) A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors. PLoS Pathog 7: e1002112.
4. SeoHS, MisanovG, SeepersaudR, DoranKS, DubrovskaI, et al. (2013) Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae. J Biol Chem 288: 35982–96.
5. LowyFD (1998) Staphylococcus aureus infections. N Engl J Med 339: 520–532.
6. SibooIR, ChambersHF, SullamPM (2005) Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73: 2273–2280.
7. SanchezCJ, ShivshankarP, StolK, TrakhtenbroitS, SullamPM, et al. (2010) The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 6: e1001044.
8. HolmL, RosenstromP (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549.
9. PletnevVZ, RuzheinikovSN, TsygannikIN, MikhailovaIY, DuaxW, et al. (1997) The structure of pea lectin-D-glucopyranose complex at a 1.9 Å resolution. RUSS. J.Bioorganic Chem 23: 469–478.
10. RabijnsA, VerbovenC, RougeP, BarreA, Van DammeEJ, et al. (2001) Structure of a legume lectin from the bark of Robinia pseudoacacia and its complex with N-acetylgalactosamine. Proteins 44: 470–478.
11. MurzinAG, BrennerSE, HubbardT, ChothiaC (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
12. JinX, WalkerMA, FelsovalyiK, VendomeJ, BahnaF, et al. (2012) Crystal structures of Drosophila N-cadherin ectodomain regions reveal a widely used class of Ca2+-free interdomain linkers. Proc Natl Acad Sci U S A 109: E127–134.
13. SotomayorM, WeihofenWA, GaudetR, CoreyDP (2012) Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492: 128–132.
14. SharonN, LisH (1990) Legume lectins—a large family of homologous proteins. FASEB J 4: 3198–3208.
15. LorisR, HamelryckT, BouckaertJ, WynsL (1998) Legume lectin structure. Biochim Biophys Acta 1383: 9–36.
16. DuvergerE, FrisonN, RocheAC, MonsignyM (2003) Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie 85: 167–179.
17. MacKenzieDA, TailfordLE, HemmingsAM, JugeN (2009) Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 284: 32444–32453.
18. GrailleM, SturaEA, HousdenNG, BeckinghamJA, BottomleySP, et al. (2001) Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure 9: 679–687.
19. BjorckL (1988) Protein L. A novel bacterial cell wall protein with affinity for Ig L chains. J Immunol 140: 1194–1197.
20. WikstromM, DrakenbergT, ForsenS, SjobringU, BjorckL (1994) Three-dimensional solution structure of an immunoglobulin light chain-binding domain of protein L. Comparison with the IgG-binding domains of protein G. Biochemistry 33: 14011–14017.
21. BeckinghamJA, BottomleySP, HintonR, SuttonBJ, GoreMG (1999) Interactions between a single immunoglobulin-binding domain of protein L from Peptostreptococcus magnus and a human κ light chain. Biochem J 340 (Pt 1): 193–199.
22. GrailleM, HarrisonS, CrumpMP, FindlowSC, HousdenNG, et al. (2002) Evidence for plasticity and structural mimicry at the immunoglobulin light chain-protein L interface. J Biol Chem 277: 47500–47506.
23. BermanH, HenrickK, NakamuraH, MarkleyJL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35: D301–303.
24. HuraGL, MenonAL, HammelM, RamboRP, PooleFL2nd, et al. (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6: 606–612.
25. KukitaK, Kawada-MatsuoM, OhoT, NagatomoM, OogaiY, et al. (2013) Staphylococcus aureus SasA is responsible for binding to the salivary agglutinin gp340, derived from human saliva. Infect Immun 81: 1870–1879.
26. HolmskovU, LawsonP, TeisnerB, TornoeI, WillisAC, et al. (1997) Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule. J Biol Chem 272: 13743–13749.
27. SrinivasVR, ReddyGB, AhmadN, SwaminathanCP, MitraN, et al. (2001) Legume lectin family, the ‘natural mutants of the quaternary state’, provide insights into the relationship between protein stability and oligomerization. Biochim Biophys Acta 1527: 102–111.
28. VellosoLM, SvenssonK, SchneiderG, PetterssonRF, LindqvistY (2002) Crystal structure of the carbohydrate recognition domain of p58/ERGIC-53, a protein involved in glycoprotein export from the endoplasmic reticulum. J Biol Chem 277: 15979–15984.
29. BraschJ, HarrisonOJ, HonigB, ShapiroL (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22: 299–310.
30. BoggonTJ, MurrayJ, Chappuis-FlamentS, WongE, GumbinerBM, et al. (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296: 1308–1313.
31. KrissinelE, HenrickK (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797.
32. BensingBA, LopezJA, SullamPM (2004) The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect Immun 72: 6528–6537.
33. SamenU, EikmannsBJ, ReinscheidDJ, BorgesF (2007) The surface protein Srr-1 of Streptococcus agalactiae binds human Keratin 4 and promotes adherence to epithelial HEp-2 Cells. Infect Immun 75: 5405–5414.
34. ShivshankarP, SanchezC, RoseLF, OrihuelaCJ (2009) The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol 73: 663–679.
35. MaurerP, HohenesterE, EngelJ (1996) Extracellular calcium-binding proteins. Curr Opin Cell Biol 8: 609–617.
36. LarsonMR, RajashankarKR, PatelMH, RobinetteRA, CrowleyPJ, et al. (2010) Elongated fibrillar structure of a Streptococcal adhesin assembled by the high-affinity association of α- and PPII-helices. Proc Natl Acad Sci U S A 107: 5983–5988.
37. GruszkaDT, WojdylaJA, BinghamRJ, TurkenburgJP, ManfieldIW, et al. (2012) Staphylococcal biofilm-forming protein has a contiguous rod-like structure. Proc Natl Acad Sci U S A 109: E1011–E1018.
38. OtwinowskiZ, MinorW (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol, Pt A 276: 307–326.
39. BrodersenDE, de La FortelleE, VonrheinC, BricogneG, NyborgJ, et al. (2000) Applications of single-wavelength anomalous dispersion at high and atomic resolution. Acta Crystallogr D Biol Crystallogr 56: 431–441.
40. AdamsPD, AfoninePV, BunkocziG, ChenVB, DavisIW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221.
41. CowtanK (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62: 1002–1011.
42. MurshudovGN, VaginAA, DodsonEJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255.
43. EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.
44. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760–763.
45. HaoQ, GuYX, ZhengCD, FanHF (2000) OASIS: a computer program for breaking phase ambiguity in one-wavelength anomalous scattering or single isomorphous substitution (replacement) data. J Appl Crystallogr 33: 980–981.
46. DavisI, Leaver-FayA, ChenV, BlockJ, KapralG, et al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35: W375–383.
47. LaskowskiR, MacarthurM, MossD, ThorntonJ (1993) Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26: 283–291.
48. TrottO, OlsonAJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31: 455–461.
49. SannerMF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17: 57–61.
50. ValleJ, LatasaC, GilC, Toledo-AranaA, SolanoC, et al. (2012) Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8: e1002843.
51. NelsonAL, RiesJ, BagnoliF, DahlbergS, FalkerS, et al. (2007) RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol Microbiol 66: 329–340.
52. JorgensenWL, ChandrasekharJ, MaduraJD, ImpeyRW, KleinML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935.
53. HessB, KutznerC, van der SpoelD, LindahlE (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4: 435–447.
54. DuanY, WuC, ChowdhuryS, LeeMC, XiongGM, et al. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24: 1999–2012.
55. BerendsenHJC, PostmaJPM, VangunsterenWF, DinolaA, HaakJR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690.
56. HessB (2008) P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4: 116–122.
57. EssmannU, PereraL, BerkowitzML, DardenT, LeeH, et al. (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8593.
58. HumphreyW, DalkeA, SchultenK (1996) VMD: Visual molecular dynamics. J Mol Graph 14: 33–38.
59. KonarevPV, VolkovVV, SokolovaAV, KochMHJ, SvergunDI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36: 1277–1282.
60. SvergunDI (1992) Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria. J Appl Crystallogr 25: 495–503.
61. SvergunDI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing (vol 76, pg 2879, 1999). Biophys J 77: 2896–2896.
62. SvergunDI, PetoukhovMV, KochMHJ (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80: 2946–2953.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Fungal Nail Infections (Onychomycosis): A Never-Ending Story?
- Profilin Promotes Recruitment of Ly6C CCR2 Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection
- Cytoplasmic Viral RNA-Dependent RNA Polymerase Disrupts the Intracellular Splicing Machinery by Entering the Nucleus and Interfering with Prp8
- HopW1 from Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis