Contribution of Specific Residues of the β-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability
Prions are infectious protein particles causing fatal diseases in mammals. Prions correspond to self-perpetuating amyloid protein polymers. Prions also exist in fungi where they behave as cytoplasmic infectious elements. The [Het-s] prion of the fungus Podospora anserina constitutes a favorable model for the analysis of the structural basis of prion propagation because a high resolution structure of the prion form of [Het-s] is available, a situation so far unique to this prion model. We have analyzed the relation between [Het-s] structure and function using alanine scanning mutagenesis. We have generated 32 single amino acid variants of the prion forming domain and analyzed their prion function in vivo and structure by solid-state NMR. We find that the PFD structure is very robust and that only a few key mutations affect prion structure and function. In addition, we find that a C-terminal semi-flexible loop plays a critical role in prion propagation although it is not part of rigid amyloid core. This study offers insights on the structural basis of prion propagation and illustrates that accessory regions outside of the amyloid core can critically participate in prion function, an observation that could be relevant to other amyloid models.
Vyšlo v časopise:
Contribution of Specific Residues of the β-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004158
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004158
Souhrn
Prions are infectious protein particles causing fatal diseases in mammals. Prions correspond to self-perpetuating amyloid protein polymers. Prions also exist in fungi where they behave as cytoplasmic infectious elements. The [Het-s] prion of the fungus Podospora anserina constitutes a favorable model for the analysis of the structural basis of prion propagation because a high resolution structure of the prion form of [Het-s] is available, a situation so far unique to this prion model. We have analyzed the relation between [Het-s] structure and function using alanine scanning mutagenesis. We have generated 32 single amino acid variants of the prion forming domain and analyzed their prion function in vivo and structure by solid-state NMR. We find that the PFD structure is very robust and that only a few key mutations affect prion structure and function. In addition, we find that a C-terminal semi-flexible loop plays a critical role in prion propagation although it is not part of rigid amyloid core. This study offers insights on the structural basis of prion propagation and illustrates that accessory regions outside of the amyloid core can critically participate in prion function, an observation that could be relevant to other amyloid models.
Zdroje
1. MauryCP (2009) Self-propagating beta-sheet polypeptide structures as prebiotic informational molecular entities: the amyloid world. Orig Life Evol Biosph 39: 141–150.
2. GreenwaldJ, RiekR (2010) Biology of amyloid: structure, function, and regulation. Structure 18: 1244–1260.
3. GreenwaldJ, RiekR (2012) On the possible amyloid origin of protein folds. J Mol Biol 421: 417–426.
4. EichnerT, RadfordSE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43: 8–18.
5. MonsellierE, ChitiF (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8: 737–742.
6. BlancoLP, EvansML, SmithDR, BadtkeMP, ChapmanMR (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20: 66–73.
7. ShewmakerF, McGlincheyRP, WicknerRB (2011) Structural insights into functional and pathological amyloid. J Biol Chem 286: 16533–16540.
8. ChitiF, DobsonCM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333–366.
9. EisenbergD, JuckerM (2012) The amyloid state of proteins in human diseases. Cell 148: 1188–1203.
10. LansburyPT (1994) Mechanism of scrapie replication. Science 265: 1510.
11. WalkerLC, LeVineH3rd (2012) Corruption and spread of pathogenic proteins in neurodegenerative diseases. J Biol Chem 287: 33109–33115.
12. Moreno-GonzalezI, SotoC (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22: 482–487.
13. ToyamaBH, WeissmanJS (2011) Amyloid structure: conformational diversity and consequences. Annu Rev Biochem 80: 557–585.
14. ColbyDW, PrusinerSB (2011) Prions. Cold Spring Harb Perspect Biol 3: a006833.
15. LiebmanSW, ChernoffYO (2012) Prions in yeast. Genetics 191: 1014–1072.
16. SaupeSJ (2011) The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin Cell Dev Biol 22: 460–468.
17. CoustouV, DeleuC, SaupeS, BegueretJ (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A 94: 9773–9778.
18. DebetsAJ, DalstraHJ, SlakhorstM, KoopmanschapB, HoekstraRF, et al. (2012) High natural prevalence of a fungal prion. Proc Natl Acad Sci U S A 109: 10432–10437.
19. RizetG (1952) Les phénomènes de barrage chez Podospora anserina. I. Analyse de barrage entre les souches s et S. Rev Cytol Biol Veg 13: 51–92.
20. BidardF, ClaveC, SaupeSJ (2013) The Transcriptional Response to Nonself in the Fungus Podospora anserina. G3 (Bethesda) 3: 1015–1030.
21. DaskalovA, PaolettiM, NessF, SaupeSJ (2012) Genomic Clustering and Homology between HET-S and the NWD2 STAND Protein in Various Fungal Genomes. Plos One 7: e34854.
22. PaolettiM, SaupeSJ (2009) Fungal incompatibility: evolutionary origin in pathogen defense? Bioessays 31: 1201–1210.
23. Beisson-SchecrounJ (1962) Incompatibilité cellulaire et interactions nucléocytoplamsiques dans les phénomènes de barrage chez le Podospora anserina. Ann Genet 4: 3–50.
24. DalstraHJ, SwartK, DebetsAJ, SaupeSJ, HoekstraRF (2003) Sexual transmission of the [Het-S] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci U S A 100: 6616–6621.
25. BalguerieA, Dos ReisS, RitterC, ChaignepainS, Coulary-SalinB, et al. (2003) Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. Embo J 22: 2071–2081.
26. GreenwaldJ, BuhtzC, RitterC, KwiatkowskiW, ChoeS, et al. (2010) The mechanism of prion inhibition by HET-S. Mol Cell 38: 889–899.
27. RitterC, MaddeleinML, SiemerAB, LuhrsT, ErnstM, et al. (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435: 844–848.
28. Van MelckebekeH, WasmerC, LangeA, AbE, LoquetA, et al. (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132: 13765–13775.
29. WasmerC, LangeA, Van MelckebekeH, SiemerAB, RiekR, et al. (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319: 1523–1526.
30. SeuringC, GreenwaldJ, WasmerC, WepfR, SaupeSJ, et al. (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10: e1001451.
31. SaupeSJ, DaskalovA (2012) The [Het-s] Prion, an Amyloid Fold as a Cell Death Activation Trigger. PLoS Pathog 8: e1002687.
32. MathurV, SeuringC, RiekR, SaupeSJ, LiebmanSW (2012) Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. Mol Cell Biol 32: 139–153.
33. CaiX, ChenJ, XuH, LiuS, JiangQX, et al. (2014) Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation. Cell 156: 1207–1222.
34. MizunoN, BaxaU, StevenAC (2011) Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy. Proc Natl Acad Sci U S A 108: 3252–3257.
35. Van der NestMA, OlsonA, LindM, VelezH, DalmanK, et al. (2014) Distribution and evolution of het gene homologs in the basidiomycota. Fungal Genet Biol 64: 45–57.
36. GendooDM, HarrisonPM (2011) Origins and evolution of the HET-s prion-forming protein: searching for other amyloid-forming solenoids. Plos One 6: e27342.
37. BenkemounL, NessF, SabateR, CeschinJ, BretonA, et al. (2011) Two structurally similar fungal prions efficiently cross-seed in vivo but form distinct polymers when coexpressed. Mol Microbiol 82: 1392–1405.
38. WasmerC, ZimmerA, SabateR, SoragniA, SaupeSJ, et al. (2010) Structural similarity between the prion domain of HET-s and a homologue can explain amyloid cross-seeding in spite of limited sequence identity. J Mol Biol 402: 311–325.
39. PetkovaAT, LeapmanRD, GuoZ, YauWM, MattsonMP, et al. (2005) Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 307: 262–265.
40. WasmerC, BenkemounL, SabateR, SteinmetzMO, Coulary-SalinB, et al. (2009) Solid-state NMR spectroscopy reveals that E. coli inclusion bodies of HET-s(218–289) are amyloids. Angew Chem Int Ed Engl 48: 4858–4860.
41. SabateR, BaxaU, BenkemounL, Sanchez de GrootN, Coulary-SalinB, et al. (2007) Prion and non-prion amyloids of the HET-s prion forming domain. J Mol Biol 370: 768–783.
42. WasmerC, SoragniA, SabateR, LangeA, RiekR, et al. (2008) Infectious and noninfectious amyloids of the HET-s(218–289) prion have different NMR spectra. Angew Chem Int Ed Engl 47: 5839–5841.
43. WanW, BianW, McDonaldM, KijacA, WemmerDE, et al. (2013) Heterogeneous seeding of a prion structure by a generic amyloid form of the fungal prion-forming domain HET-s(218–289). J Biol Chem 288: 29604–29612.
44. WanW, WilleH, StohrJ, BaxaU, PrusinerSB, et al. (2012) Degradation of fungal prion HET-s(218–289) induces formation of a generic amyloid fold. Biophys J 102: 2339–2344.
45. FergusonN, BeckerJ, TidowH, TremmelS, SharpeTD, et al. (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci U S A 103: 16248–16253.
46. WilliamsAD, ShivaprasadS, WetzelR (2006) Alanine scanning mutagenesis of Abeta(1–40) amyloid fibril stability. J Mol Biol 357: 1283–1294.
47. RossED, EdskesHK, TerryMJ, WicknerRB (2005) Primary sequence independence for prion formation. Proc Natl Acad Sci U S A 102: 12825–12830.
48. DerkatchIL, ChernoffYO, KushnirovVV, Inge-VechtomovSG, LiebmanSW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144: 1375–1386.
49. TanakaM, ChienP, NaberN, CookeR, WeissmanJS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428: 323–328.
50. MarchanteR, RoweM, ZenthonJ, HowardMJ, TuiteMF (2013) Structural Definition Is Important for the Propagation of the Yeast [PSI(+)] Prion. Mol Cell 50: 675–685.
51. CoustouV, DeleuC, SaupeSJ, BegueretJ (1999) Mutational analysis of the [Het-s] prion analog of Podospora anserina. A short N-terminal peptide allows prion propagation. Genetics 153: 1629–1640.
52. DeleuC, ClaveC, BegueretJ (1993) A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. Genetics 135: 45–52.
53. BaileyTL, BodenM, BuskeFA, FrithM, GrantCE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–208.
54. BenkemounL, SabateR, MalatoL, Dos ReisS, DalstraH, et al. (2006) Methods for the in vivo and in vitro analysis of [Het-s] prion infectivity. Methods 39: 61–67.
55. MalatoL, Dos ReisS, BenkemounL, SabateR, SaupeSJ (2007) Role of Hsp104 in the propagation and inheritance of the [Het-s] prion. Mol Biol Cell 18: 4803–4812.
56. SiemerAB, RitterC, ErnstM, RiekR, MeierBH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed Engl 44: 2441–2444.
57. Creighton TE (1993) Proteins: Structures and Molecular Properties, 2nd edition. New York: Freedman.
58. LuisiDL, SnowCD, LinJJ, HendschZS, TidorB, et al. (2003) Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. Biochemistry 42: 7050–7060.
59. MarquseeS, SauerRT (1994) Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor. Protein Sci 3: 2217–2225.
60. SchreiberG, FershtAR (1995) Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol 248: 478–486.
61. SantoroMM, BolenDW (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27: 8063–8068.
62. Wang WaR, C.J., editor (2010) Aggregation of therapeutic proteins. Hoboken, New Jersey: Wiley.
63. WhittenST, WoollJO, RazeghifardR, Garcia-MorenoEB, HilserVJ (2001) The origin of pH-dependent changes in m-values for the denaturant-induced unfolding of proteins. J Mol Biol 309: 1165–1175.
64. BateyS, ClarkeJ (2006) Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains. Proc Natl Acad Sci U S A 103: 18113–18118.
65. MyersJK, PaceCN, ScholtzJM (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4: 2138–2148.
66. KajavaAV, BaxaU, StevenAC (2010) Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J 24: 1311–1319.
67. TanakaM, CollinsSR, ToyamaBH, WeissmanJS (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442: 585–589.
68. LegnameG, NguyenHO, PeretzD, CohenFE, DeArmondSJ, et al. (2006) Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 103: 19105–19110.
69. ColbyDW, GilesK, LegnameG, WilleH, BaskakovIV, et al. (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci U S A 106: 20417–20422.
70. FriedmanR, CaflischA (2013) Wild type and mutants of the HET-s(218–289) prion show different flexibility at fibrillar ends: A simulation study. Proteins 82: 399–404.
71. ChitiF, WebsterP, TaddeiN, ClarkA, StefaniM, et al. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96: 3590–3594.
72. NelsonR, EisenbergD (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16: 260–265.
73. NelsonR, SawayaMR, BalbirnieM, MadsenAO, RiekelC, et al. (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435: 773–778.
74. SawayaMR, SambashivanS, NelsonR, IvanovaMI, SieversSA, et al. (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447: 453–457.
75. MargittaiM, LangenR (2006) Side chain-dependent stacking modulates tau filament structure. J Biol Chem 281: 37820–37827.
76. TjernbergL, HosiaW, BarkN, ThybergJ, JohanssonJ (2002) Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides. J Biol Chem 277: 43243–43246.
77. ZanuyD, NussinovR (2003) The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22–27 and 22–29. J Mol Biol 329: 565–584.
78. Fernandez-EscamillaAM, RousseauF, SchymkowitzJ, SerranoL (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22: 1302–1306.
79. TartagliaGG, PawarAP, CampioniS, DobsonCM, ChitiF, et al. (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380: 425–436.
80. TrovatoA, ChitiF, MaritanA, SenoF (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2: e170.
81. El-KhouryR, SellemCH, CoppinE, BoivinA, MaasMF, et al. (2008) Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Curr Genet 53: 249–258.
82. TakegoshiK, NakamuraS, TeraoT (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Phys Lett 344: 631–637.
83. VrankenWF, BoucherW, StevensTJ, FoghRH, PajonA, et al. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59: 687–696.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 6
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Fungal Nail Infections (Onychomycosis): A Never-Ending Story?
- Profilin Promotes Recruitment of Ly6C CCR2 Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection
- Cytoplasmic Viral RNA-Dependent RNA Polymerase Disrupts the Intracellular Splicing Machinery by Entering the Nucleus and Interfering with Prp8
- HopW1 from Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis