Catching Fire: , Macrophages, and Pyroptosis
article has not abstract
Vyšlo v časopise:
Catching Fire: , Macrophages, and Pyroptosis. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004139
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004139
Souhrn
article has not abstract
Zdroje
1. Moran GP, Coleman D, Sullivan D (2012) An introduction to the medically important Candida species. In: Calderone R, Clancy CJ, editors. Candida and Candidiasis. 2nd edition. Washington, D.C.: ASM Press. pp. 11–25.
2. SeiderK, HeykenA, LuttichA, MiramonP, HubeB (2010) Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 13: 392–400.
3. LionakisMS, NeteaMG (2013) Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog 9: e1003079.
4. FillerSG (2006) Candida-host cell receptor-ligand interactions. Curr Opin Microbiol 9: 333–339.
5. GowNA, van de VeerdonkFL, BrownAJ, NeteaMG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10: 112–122.
6. LionakisMS, LimJK, LeeCC, MurphyPM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3: 180–199.
7. LewisLE, BainJM, LowesC, GillespieC, RudkinFM, et al. (2012) Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog 8: e1002578.
8. Jimenez-LopezC, ColletteJR, BrothersKM, ShepardsonKM, CramerRA, et al. (2013) Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot Cell 12: 91–100.
9. LewisLE, BainJM, OkaiB, GowNA, ErwigLP (2013) Live-cell video microscopy of fungal pathogen phagocytosis. J Vis Exp doi:10.3791/50196
10. McKenzieCG, KoserU, LewisLE, BainJM, Mora-MontesHM, et al. (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78: 1650–1658.
11. LevitzSM (2010) Innate recognition of fungal cell walls. PLoS Pathog 6: e1000758.
12. JolyS, SutterwalaFS (2010) Fungal pathogen recognition by the NLRP3 inflammasome. Virulence 1: 276–280.
13. WellingtonM, KoselnyK, SutterwalaFS, KrysanDJ (2014) Candida albicans Triggers NLRP3-Mediated Pyroptosis in Macrophages. Eukaryot Cell 13: 329–340.
14. WellingtonM, KoselnyK, KrysanDJ (2012) Candida albicans morphogenesis is not required for macrophage interleukin 1beta production. MBio 4: e00433–00412.
15. UwamahoroN, Verma-GaurJ, ShenHH, QuY, LewisR, et al. (2014) The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio 5: e00003–00014.
16. BainJM, LewisLE, OkaiB, QuinnJ, GowNA, et al. (2012) Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet Biol 49: 677–678.
17. GalluzziL, VitaleI, AbramsJM, AlnemriES, BaehreckeEH, et al. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107–120.
18. Ibata-OmbettaS, IdziorekT, TrinelPA, PoulainD, JouaultT (2003) Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 278: 13086–13093.
19. LaRockCN, CooksonBT (2013) Burning down the house: cellular actions during pyroptosis. PLoS Pathog 9: e1003793.
20. MiaoEA, RajanJV, AderemA (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243: 206–214.
21. FranchiL, Munoz-PlanilloR, NunezG (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13: 325–332.
22. KayagakiN, WarmingS, LamkanfiM, WalleLV, LouieS, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117–121.
23. GrossO, PoeckH, BscheiderM, DostertC, HannesschlagerN, et al. (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459: 433–436.
24. HiseAG, TomalkaJ, GanesanS, PatelK, HallBA, et al. (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5: 487–497.
25. JolyS, MaN, SadlerJJ, SollDR, CasselSL, et al. (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183: 3578–3581.
26. TomalkaJ, GanesanS, AzodiE, PatelK, MajmudarP, et al. (2011) A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog 7: e1002379.
27. GringhuisSI, KapteinTM, WeversBA, TheelenB, van der VlistM, et al. (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol 13: 246–254.
28. FinkSL, CooksonBT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8: 1812–1825.
29. WenH, MiaoEA, TingJP (2013) Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 39: 432–441.
30. van de VeerdonkFL, JoostenLA, ShawPJ, SmeekensSP, MalireddiRK, et al. (2011) The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol 41: 2260–2268.
31. NeteaMG, StuytRJ, KimSH, Van der MeerJW, KullbergBJ, et al. (2002) The role of endogenous interleukin (IL)-18, IL-12, IL-1beta, and tumor necrosis factor-alpha in the production of interferon-gamma induced by Candida albicans in human whole-blood cultures. J Infect Dis 185: 963–970.
32. NeteaMG, VonkAG, van den HovenM, VerschuerenI, JoostenLA, et al. (2003) Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur J Immunol 33: 3409–3417.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 6
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Profilin Promotes Recruitment of Ly6C CCR2 Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection
- Fungal Nail Infections (Onychomycosis): A Never-Ending Story?
- Contribution of Specific Residues of the β-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability
- The Highly Conserved Bacterial RNase YbeY Is Essential in , Playing a Critical Role in Virulence, Stress Regulation, and RNA Processing