Adequate Th2-Type Response Associates with Restricted Bacterial Growth in Latent Mycobacterial Infection of Zebrafish
Tuberculosis is a common and potentially lethal lung disease spread worldwide. One third of the world's population is estimated to be infected with Mycobacterium tuberculosis, yet most individuals develop a latent disease which has the potential to reactivate. Some are thought to be able to clear the infection. The current vaccine does not give adequate protection against the disease, and due to incorrect use of antibiotics, resistance to treatment has substantially increased. There is an urgent need for novel treatment approaches, such as modulation of the host's immune response. However, the ideal immune response against tuberculosis is unknown. In addition, more accurate diagnostic tools are needed for distinguishing the high risk individuals among latent patients so that treatment could be given to those that are most likely to benefit from it. In this study, we used the Mycobacterium marinum-zebrafish model to study the T cell responses in mycobacterial infection. Utilizing the natural heterogeneity of the zebrafish population, we found associations between the disease severity (bacterial load) and the type and magnitude of T cell responses. Our results on typical T cell signatures are useful as diagnostic biomarkers as well as provide new understanding needed for therapeutic approaches based on immunomodulation.
Vyšlo v časopise:
Adequate Th2-Type Response Associates with Restricted Bacterial Growth in Latent Mycobacterial Infection of Zebrafish. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004190
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004190
Souhrn
Tuberculosis is a common and potentially lethal lung disease spread worldwide. One third of the world's population is estimated to be infected with Mycobacterium tuberculosis, yet most individuals develop a latent disease which has the potential to reactivate. Some are thought to be able to clear the infection. The current vaccine does not give adequate protection against the disease, and due to incorrect use of antibiotics, resistance to treatment has substantially increased. There is an urgent need for novel treatment approaches, such as modulation of the host's immune response. However, the ideal immune response against tuberculosis is unknown. In addition, more accurate diagnostic tools are needed for distinguishing the high risk individuals among latent patients so that treatment could be given to those that are most likely to benefit from it. In this study, we used the Mycobacterium marinum-zebrafish model to study the T cell responses in mycobacterial infection. Utilizing the natural heterogeneity of the zebrafish population, we found associations between the disease severity (bacterial load) and the type and magnitude of T cell responses. Our results on typical T cell signatures are useful as diagnostic biomarkers as well as provide new understanding needed for therapeutic approaches based on immunomodulation.
Zdroje
1. AbebeF, BjuneG (2009) The protective role of antibody responses during mycobacterium tuberculosis infection. Clinical & Experimental Immunology 157 (2) 235–243.
2. World Health Organization. (2013) Global tuberculosis report 2013. http://www.who.int/tb/publications/global_report/en/
3. BarryCE, BoshoffHI, DartoisV, DickT, EhrtS, et al. (2009) The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nature Reviews Microbiology 7 (12) 845–855.
4. HavlirDV, BarnesPF (1999) Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med 340 (5) 367–373.
5. MoguesT, GoodrichME, RyanL, LaCourseR, NorthRJ (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne mycobacterium tuberculosis infection in mice. J Exp Med 193 (3) 271–280.
6. FlynnJL, ChanJ, TrieboldKJ, DaltonDK, StewartTA, et al. (1993) An essential role for interferon gamma in resistance to mycobacterium tuberculosis infection. J Exp Med 178 (6) 2249.
7. CooperAM, DaltonDK, StewartTA, GriffinJP, RussellDG, et al. (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178 (6) 2243–2247.
8. CooperAM, MagramJ, FerranteJ, OrmeIM (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 186 (1) 39–45.
9. OrmeIM, RobertsAD, GriffinJP, AbramsJS (1993) Cytokine secretion by CD4 T lymphocytes acquired in response to mycobacterium tuberculosis infection. J Immunol 151 (1) 518–525.
10. Hernandez-PandoR, OrozcoeH, SampieriA, PavonL, VelasquilloC, et al. (1996) Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology 89 (1) 26–33.
11. JungYJ, LaCourseR, RyanL, NorthRJ (2002) Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against mycobacterium tuberculosis lung infection in mice. Infect Immun 70 (11) 6436–6443.
12. Kozakiewicz L, Phuah J, Flynn J, Chan J. (2013) The role of B cells and humoral immunity in mycobacterium tuberculosis infection. In: Anonymous The New Paradigm of Immunity to Tuberculosis. Springer. pp. 225–250.
13. GuptaU, KatochV (2005) Animal models of tuberculosis. Tuberculosis 85 (5) 277–293.
14. LinPL, RodgersM, SmithL, BigbeeM, MyersA, et al. (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77 (10) 4631.
15. SubbianS, O'BrienP, KushnerNL, YangG, TsenovaL, et al. (2013) Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell Commun Signal 11 (1) 16–811X-11-16.
16. SubbianS, TsenovaL, O'BrienP, YangG, KushnerNL, et al. (2012) Spontaneous latency in a rabbit model of pulmonary tuberculosis. The American Journal of Pathology 181 (5) 1711–1724.
17. ParikkaM, HammarénMM, HarjulaSE, HalfpennyNJ, OksanenKE, et al. (2012) Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish. PLoS Pathogens 8 (9) e1002944.
18. KaattariI, RhodesM, KaattariS, ShottsE (2006) The evolving story of mycobacterium tuberculosis clade members detected in fish. J Fish Dis 29 (9) 509–520.
19. TakakiK, CosmaCL, TrollMA, RamakrishnanL (2012) An in vivo platform for rapid high-throughput antitubercular drug discovery. Cell Reports 2 (1) 175–84.
20. BergRD, RamakrishnanL (2012) Insights into tuberculosis from the zebrafish model. Trends Mol Med 18 (12) 689–90.
21. MeijerAH, SpainkHP (2011) Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12 (7) 1000.
22. RenshawSA, TredeNS (2012) A model 450 million years in the making: Zebrafish and vertebrate immunity. Disease Models & Mechanisms 5 (1) 38–47.
23. OlsonNC, SallamR, DoyleMF, TracyRP, HuberSA (2013) T helper cell polarization in healthy people: Implications for cardiovascular disease. Journal of Cardiovascular Translational Research 6 (5) 772–786.
24. HawkinsRD, LarjoA, TripathiSK, WagnerU, LuuY, et al. (2013) Global chromatin state analysis reveals lineage-specific enhancers during the initiation of human T helper 1 and T helper 2 cell polarization. Immunity 38 (6) 1271–1284.
25. LinPL, FlynnJAL (2010) Understanding latent tuberculosis: A moving target. The Journal of Immunology 185 (1) 15.
26. YoderJA, OrcuttTM, TraverD, LitmanGW (2007) Structural characteristics of zebrafish orthologs of adaptor molecules that associate with transmembrane immune receptors. Gene 401 (1) 154–164.
27. KanhereA, HertweckA, BhatiaU, GökmenMR, PeruchaE, et al. (2012) T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nature Communications 3: 1268.
28. WangL, ShangN, FengH, GuoQ, DaiH (2013) Molecular cloning of grass carp (ctenopharyngodon idellus) T-bet and GATA-3, and their expression profiles with IFN-γ in response to grass carp reovirus (GCRV) infection. Fish Physiol Biochem 39 (4) 793–805.
29. MitraS, AlnabulsiA, SecombesCJ, BirdS (2010) Identification and characterization of the transcription factors involved in T-cell development, t-bet, stat6 and foxp3, within the zebrafish, danio rerio. FEBS Journal 277 (1) 128–147.
30. KumariJ, BogwaldJ, DalmoRA (2009) Transcription factor GATA-3 in atlantic salmon (salmo salar): Molecular characterization, promoter activity and expression analysis. Mol Immunol 46 (15) 3099–3107.
31. ZhuLY, PanPP, FangW, ShaoJZ, XiangLX (2012) Essential role of IL-4 and IL-4Ralpha interaction in adaptive immunity of zebrafish: Insight into the origin of Th2-like regulatory mechanism in ancient vertebrates. J Immunol 188 (11) 5571–5584.
32. FillatreauS, SixA, MagadanS, CastroR, SunyerJO, et al. (2013) The astonishing diversity of ig classes and B cell repertoires in teleost fish. Frontiers in Immunology 4: 28.
33. Lugo-VillarinoG, BallaKM, StachuraDL, BañuelosK, WerneckMBF, et al. (2010) Identification of dendritic antigen-presenting cells in the zebrafish. Proceedings of the National Academy of Sciences 107 (36) 15850.
34. OksanenKE, HalfpennyNJ, SherwoodE, HarjulaSE, HammarénMM, et al. (2013) An adult zebrafish model for preclinical tuberculosis vaccine development. Vaccine 31 (45) 5202–5209.
35. ZeaAH, OchoaMT, GhoshP, LongoDL, AlvordWG, et al. (1998) Changes in expression of signal transduction proteins in T lymphocytes of patients with leprosy. Infect Immun Feb;66 (2) 499–504.
36. KumarS, NaqviRA, KhannaN, RaoDN (2011) Disruption of HLA-DR raft, deregulations of Lck-ZAP-70-Cbl-b cross-talk and miR181a towards T cell hyporesponsiveness in leprosy. Mol Immunol 48 (9–10) 1178–90.
37. MahonRN, SandeOJ, RojasRE, LevineAD, HardingCV, et al. (2012) Mycobacterium tuberculosis ManLAM inhibits T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation. Cell Immunol 275 (1–2) 98–105.
38. HirschCS, JohnsonJL, OkweraA, KanostRA, WuM, et al. (2005) Mechanisms of apoptosis of T-cells in human tuberculosis. J Clin Immunol 25 (4) 353–364.
39. UrdahlK, ShafianiS, ErnstJ (2011) Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunology 4 (3) 288–293.
40. SmithBM, MenziesD (2011) Treatment of latent TB: First do no harm. Expert Review of Anti-Infective Therapy 9 (5) 491–493.
41. WuB, HuangC, Kato-MaedaM, HopewellPC, DaleyCL, et al. (2007) Messenger RNA expression of IL-8, FOXP3, and IL-12beta differentiates latent tuberculosis infection from disease. J Immunol 178 (6) 3688–3694.
42. BelkaidY (2008) Role of Foxp3-positive regulatory T cells during infection. Eur J Immunol 38 (4) 918–921.
43. ShafianiS, Tucker-HeardG, KariyoneA, TakatsuK, UrdahlKB (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207 (7) 1409–1420.
44. KaufmannSH (2013) Tuberculosis vaccines: Time to think about the next generation. 25 (2) 172–181.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Fungal Nail Infections (Onychomycosis): A Never-Ending Story?
- Profilin Promotes Recruitment of Ly6C CCR2 Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection
- Cytoplasmic Viral RNA-Dependent RNA Polymerase Disrupts the Intracellular Splicing Machinery by Entering the Nucleus and Interfering with Prp8
- HopW1 from Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis