Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and resistance in
The complexity of the malaria parasite life cycle makes it an elusive target for drug and vaccine development. Thus, targeting the parasite in the mosquito vector is an attractive alternative. When consuming an infective blood meal the mosquito ingests not only the blood proteins and parasites, but a range of host blood factors, including the insulin-like growth factor-1 (IGF1) hormone. IGF1 is a highly conserved signaling molecule that regulates a broad spectrum of cellular processes, including immunity and midgut homeostasis. We previously demonstrated that human IGF1 ingested in a blood meal can induce cell signaling in the mosquito midgut that reduces malaria parasite development and extends mosquito lifespan. In this study, we show that midgut signaling by human IGF1 increased the synthesis of reactive oxygen species in midgut mitochondria and enhanced nitric oxide synthase gene expression, responses that inhibit malaria parasite development in the mosquito. Additionally, we found that IGF1 signaling facilitates midgut homeostasis to enhance mosquito survival. These results suggest that IGF1 signaling in the mosquito midgut could be targeted to coordinately enhance mosquito fitness and anti-parasite resistance for improved malaria control strategies.
Vyšlo v časopise:
Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and resistance in. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004231
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004231
Souhrn
The complexity of the malaria parasite life cycle makes it an elusive target for drug and vaccine development. Thus, targeting the parasite in the mosquito vector is an attractive alternative. When consuming an infective blood meal the mosquito ingests not only the blood proteins and parasites, but a range of host blood factors, including the insulin-like growth factor-1 (IGF1) hormone. IGF1 is a highly conserved signaling molecule that regulates a broad spectrum of cellular processes, including immunity and midgut homeostasis. We previously demonstrated that human IGF1 ingested in a blood meal can induce cell signaling in the mosquito midgut that reduces malaria parasite development and extends mosquito lifespan. In this study, we show that midgut signaling by human IGF1 increased the synthesis of reactive oxygen species in midgut mitochondria and enhanced nitric oxide synthase gene expression, responses that inhibit malaria parasite development in the mosquito. Additionally, we found that IGF1 signaling facilitates midgut homeostasis to enhance mosquito survival. These results suggest that IGF1 signaling in the mosquito midgut could be targeted to coordinately enhance mosquito fitness and anti-parasite resistance for improved malaria control strategies.
Zdroje
1. World Health Organization (2012) World malaria report 2012. World Health Organization.
2. EnayatiA, HemingwayJ (2010) Malaria management: past, present, and future. Ann Rev Entomol 55: 569–591.
3. WhittenMM, ShiaoSH, LevashinaEA (2006) Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 28: 121–130.
4. ClaytonAM, DongY, DimopoulosG (2013) The Anopheles innate immune system in the defense against malaria infection. J Innate Immun 6: 169–81 DOI: 10.1159/000353602
5. BatonLA, Ranford-CartwrightLC (2012) Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection. Intl J Parasitol 42: 249–258.
6. LuckhartS, VodovotzY, CuiL, RosenbergR (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A 95: 5700–5705.
7. PetersonTM, GowAJ, LuckhartS (2007) Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Rad Biol Med 42: 132–142.
8. SurachetpongW, SinghN, CheungKW, LuckhartS (2009) MAPK ERK signaling regulates the TGF-β1-dependent mosquito response to Plasmodium falciparum. PLoS Pathog 5: e1000366.
9. PakpourN, CampL, SmithersHM, WangB, TuZ, et al. (2013) Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes. PLoS One 8: e76535.
10. LimJ, GowdaDC, KrishnegowdaG, LuckhartS (2005) Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols. Infect Immun 73: 2778–2789.
11. PakpourN, Akman-AndersonL, VodovotzY, LuckhartS (2013) The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microbes Infect 15: 243–254.
12. KangMA, MottTM, TapleyEC, LewisEE, LuckhartS (2008) Insulin regulates aging and oxidative stress in Anopheles stephensi. J Exp Biol 211: 741–748.
13. SurachetpongW, PakpourN, CheungKW, LuckhartS (2011) Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum. Antioxid Redox Signal 14: 943–955.
14. PakpourN, Corby-HarrisV, GreenGP, SmithersHM, CheungKW, et al. (2012) Ingested human insulin inhibits the mosquito NF-κB-dependent immune response to Plasmodium falciparum. Infect Immun 80: 2141–2149.
15. WhiteNJ, WarrellDA, ChanthavanichP, LooareesuwanS, WarrellMJ, et al. (1983) Severe hypoglycemia and hyperinsulinemia in falciparum malaria. NE J Med 309: 61–66.
16. Planche T, Dzeing A, Ngou-Milama E, Kombila M, Stacpoole PW (2005) Metabolic complications of severe malaria. In Malaria: Drugs, Disease and Post-genomic Biology Berlin Heidelberg: Springer. pp. 105–136.
17. DrexlerA, NussA, HauckE, GlennonE, CheungK, et al. (2013) Human IGF1 extends lifespan and enhances resistance to Plasmodium falciparum infection in the malaria vector Anopheles stephensi. J Exp Biol 216: 208–217.
18. MizushimaY, KatoH, OhmaeH, TanakaT, BobogareA, et al. (1994) Prevalence of malaria and its relationship to anemia, blood glucose levels, and serum somatomedin c (IGF-1) levels in the Solomon Islands. Acta Trop 58: 207–220.
19. LöfqvistC, AnderssonE, GelanderL, RosbergS, BlumWF, et al. (2001) Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. J Clin Endocrinol Metab 86: 5870–5876.
20. RenehanAG, JonesJ, O'DwyerST, ShaletSM (2003) Determination of IGF-I, IGF-II, IGFBP-2, and IGFBP-3 levels in serum and plasma: comparisons using the Bland–Altman method. Growth Horm IGF Res 13: 341–346.
21. HaradaH, AndersenJS, MannM, TeradaN, KorsmeyerSJ (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98: 9666–9670.
22. BuchonN, BroderickNA, KuraishiT, LemaitreB (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8: 152.
23. CuervoAM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24: 604–612.
24. TóthML, SigmondT, BorsosÉ, BarnaJ, ErdélyiP, et al. (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4: 330–338.
25. JiaK, ThomasC, AkbarM, SunQ, Adams-HuetB, et al. (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A 106: 14564–14569.
26. ReraM, AziziMJ, WalkerDW (2013) Organ-specific mediation of lifespan extension: More than a gut feeling? Ageing Res Rev 12: 436–444.
27. AmcheslavskyA, JiangJ, IpYT (2009) Tissue damage-induced intestinal stem Cell division in Drosophila. Cell Stem Cell 4: 49–61.
28. LibertS, ChaoY, ZwienerJ, PletcherSD (2008) Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction. Mol Immunol 45: 810–817.
29. BeckerT, LochG, BeyerM, ZinkeI, AschenbrennerAC, et al. (2010) FOXO-dependent regulation of innate immune homeostasis. Nature 463: 369–373.
30. BiteauB, KarpacJ, SupoyoS, DeGennaroM, LehmannR, et al. (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 6: e1001159.
31. LuckhartS, GiuliviC, DrexlerAL, Antonova-KochY, SakaguchiD, et al. (2013) Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog 9: e1003180.
32. HauckES, Antonova-KochY, DrexlerA, PietriJ, PakpourN, et al. (2013) Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes Infect 15: 775–787.
33. LinY, YangQ, WangX, LiuZG (2006) The essential role of the death domain kinase receptor-interacting protein in insulin growth factor-I-induced c-Jun N-terminal kinase activation. J Biol Chem 281: 23525–23532.
34. MeylanE, TschoppJ (2005) The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30: 151–159.
35. GeorgelP, NaitzaS, KapplerC, FerrandonD, ZacharyD, et al. (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1: 503–514.
36. LigoxygakisP (2013) Genetics of immune recognition and response in Drosophila host defense. Adv Genet 83: 71–97.
37. GarverLS, BahiaAC, DasS, Souza-NetoJA, ShiaoJ, et al. (2012) Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action. PLoS Pathog 8: e1002737.
38. GarverLS, de Almeida OliveiraG, Barillas-MuryC (2013) The JNK Pathway Is a Key Mediator of Anopheles gambiae Antiplasmodial Immunity. PLoS Pathog 9: e1003622.
39. Akman-AndersonL, OlivierM, LuckhartS (2007) Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin. Infect Immun 75: 4012–4019.
40. DelaneyJR, StovenS, UvellH, AndersonKV, EngstromY, et al. (2006) Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. EMBO J 25: 3068–3077.
41. ParkJM, BradyH, RuoccoMG, SunH, WilliamsD, et al. (2004) Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 18: 584–594.
42. SilvermanN, ZhouR, ErlichRL, HunterM, BernsteinE, et al. (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278: 48928–48934.
43. Oliveira GdeA, LiebermanJ, Barillas-MuryC (2012) Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335: 856–859.
44. FigueiraTR, BarrosMH, CamargoAA, CastilhoRF, FerreiraJC, et al. (2013) Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 18: 2029–2074.
45. KuznetsovAV, KehrerI, KozlovAV, HallerM, RedlH, et al. (2011) Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem 400: 2383–2390.
46. TroncosoR, VicencioJM, ParraV, NemchenkoA, KawashimaY, et al. (2012) Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res 93: 320–329.
47. LuckhartS, VodovotzY, CuiL, RosenbergR (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A 95: 5700–5705.
48. GüntherC, NeumannH, NeurathMF, BeckerC (2013) Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 62: 1062–1071.
49. AbreuMT, PalladinoAA, ArnoldET, KwonRS, McRobertsJA (2000) Modulation of barrier function during Fas-mediated apoptosis in human intestinal epitelial cells. Gastroenterology 119: 1524–1536.
50. ChinAC, TeohDA, ScottKG, MeddingsJB, MacnaughtonWK, et al. (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70: 3673–3680.
51. PanH, CaiN, LiM, LiuGH, Izpisua BelmonteJC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5: 327–331.
52. VessoniAT, MuotriAR, OkamotoOK (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21: 513–520.
53. YanoT, MitaS, OhmoriH, OshimaY, FujimotoY, et al. (2008) Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9: 908–916.
54. RandowF, MünzC (2012) Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol 33: 475–487.
55. BenjaminJL, SumpterRJr, LevineB, HooperLV (2013) Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13: 723–734.
56. Randall-DemlloS, ChieppaM, EriR (2013) Intestinal epithelium and autophagy: partners in gut homeostasis. Front Immunol 4: 301.
57. MicchelliCA, PerrimonN (2005) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439: 475–479.
58. OhlsteinB, SpradlingA (2005) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439: 470–474.
59. SuzukiK, OhsumiY (2007) Molecular machinery of autophagosome formation in yeast Saccharomyces cerevisiae. FEBS Lett 581: 2156–2161.
60. OhSW, MukhopadhyayA, SvrzikapaN, JiangF, DavisRJ, et al. (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 102: 4494–4499.
61. WangMC, BohmannD, JasperH (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121: 115–125.
62. BiteauB, HochmuthCE, JasperH (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3: 442–455.
63. Owusu-AnsahE, SongW, PerrimonN (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155: 699–712.
64. WenZ, GuliaM, ClarkKD, DharaA, CrimJW, et al. (2010) Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities. Molec Cell Endocrinol 328: 47–55.
65. Rasband WS, ImageJ (1997) U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2012.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Fungal Nail Infections (Onychomycosis): A Never-Ending Story?
- Profilin Promotes Recruitment of Ly6C CCR2 Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection
- Cytoplasmic Viral RNA-Dependent RNA Polymerase Disrupts the Intracellular Splicing Machinery by Entering the Nucleus and Interfering with Prp8
- HopW1 from Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis