Evasion of Autophagy and Intracellular Killing by Human Myeloid Dendritic Cells Involves DC-SIGN-TLR2 Crosstalk
Among the most successful of human microbes are intracellular pathogens. By entering the intracellular milieu, these pathogens are protected from harsh environmental factors in the host, including the humoral and cellular immune responses. Porphyromonas gingivalis is an opportunistic pathogen that colonizes the oral mucosa and accesses the bloodstream and distant sites such as the blood vessel walls, brain, placenta and other organs. Still unclear is how P. gingivalis traverses from oral mucosa to these distant sites. Dendritic cells are highly migratory antigen presenting cells that “patrol” the blood, skin, mucosa and all the major organ systems. Capture of microbes by dendritic cells activates a tightly regulated series of events, including directed migration towards the secondary lymphoid organs, where processed antigens are ostensibly presented to T cells. Autophagy is now recognized as an integral component of microbial clearance, antigen processing and presentation by dendritic cells. We report here that P. gingivalis is able to subvert autophagic destruction within dendritic cells. This occurs through its glycoprotein fimbriae, called Mfa-1, which targets the C-type lectin DC-SIGN on dendritic cells. The other major fimbriae on P. gingivalis, FimA, targets TLR2, which promotes autophagic destruction of P. gingivalis. We conclude that DC-SIGN-TLR2 crosstalk determines the intracellular fate of this pathogen within dendritic cells, and may have profound implications for the treatment of many chronic diseases involving low-grade infections.
Vyšlo v časopise:
Evasion of Autophagy and Intracellular Killing by Human Myeloid Dendritic Cells Involves DC-SIGN-TLR2 Crosstalk. PLoS Pathog 11(2): e32767. doi:10.1371/journal.ppat.1004647
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004647
Souhrn
Among the most successful of human microbes are intracellular pathogens. By entering the intracellular milieu, these pathogens are protected from harsh environmental factors in the host, including the humoral and cellular immune responses. Porphyromonas gingivalis is an opportunistic pathogen that colonizes the oral mucosa and accesses the bloodstream and distant sites such as the blood vessel walls, brain, placenta and other organs. Still unclear is how P. gingivalis traverses from oral mucosa to these distant sites. Dendritic cells are highly migratory antigen presenting cells that “patrol” the blood, skin, mucosa and all the major organ systems. Capture of microbes by dendritic cells activates a tightly regulated series of events, including directed migration towards the secondary lymphoid organs, where processed antigens are ostensibly presented to T cells. Autophagy is now recognized as an integral component of microbial clearance, antigen processing and presentation by dendritic cells. We report here that P. gingivalis is able to subvert autophagic destruction within dendritic cells. This occurs through its glycoprotein fimbriae, called Mfa-1, which targets the C-type lectin DC-SIGN on dendritic cells. The other major fimbriae on P. gingivalis, FimA, targets TLR2, which promotes autophagic destruction of P. gingivalis. We conclude that DC-SIGN-TLR2 crosstalk determines the intracellular fate of this pathogen within dendritic cells, and may have profound implications for the treatment of many chronic diseases involving low-grade infections.
Zdroje
1. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469: 323–335. doi: 10.1038/nature09782 21248839
2. Baxt et al (2013) Bacterial subversion of host innate immune pathways. Science 340: 697–701. doi: 10.1126/science.1235771 23661751
3. Jo EK, Yuk JM, Shin DM, Sasakawa C (2013) Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 4: 97. doi: 10.3389/fimmu.2013.00097 23653625
4. Deretic V (2010) Autophagy in infection. Curr Opin Cell Biol 22: 252–262. doi: 10.1016/j.ceb.2009.12.009 20116986
5. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216. 11861602
6. den Dunnen et al (2009) Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother 58: 1149–1157. doi: 10.1007/s00262-008-0615-1 18998127
7. Rodriguez et al (1999) Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1: 362–368. 10559964
8. Bevan MJ (2006) Cross-priming. Nat Immunol 7: 363–365. 16550200
9. Heath WR, Carbone FR (2001) Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 1: 126–134. 11905820
10. Underhill DM, Goodridge HS (2012) Information processing during phagocytosis. Nat Rev Immunol 12: 492–502. doi: 10.1038/nri3244 22699831
11. Blander JM, Medzhitov R (2006) On regulation of phagosome maturation and antigen presentation. Nat Immunol 7: 1029–1035. 16985500
12. Trombetta et al (2003) Activation of lysosomal function during dendritic cell maturation. Science 299: 1400–1403. 12610307
13. Griffiths G (2004) On phagosome individuality and membrane signalling networks. Trends Cell Biol 14: 343–351. 15246427
14. Zeituni et al (2009) Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response. J Immunol 183: 5694–5704. doi: 10.4049/jimmunol.0901030 19828628
15. Geijtenbeek et al (2009) Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol 4: 879–890. doi: 10.2217/fmb.09.51 19722841
16. Svajger U, Jeras M (2011) Optimal dendritic cell differentiation in rpmi media requires the absence of HEPES buffer. Immunol Invest 40: 413–426. doi: 10.3109/08820139.2011.556172 21314286
17. Zhou et al (2006) DC-SIGN and immunoregulation. Cell Mol Immunol 3: 279–283. 16978536
18. Engering et al (2002) Immune escape through C-type lectins on dendritic cells. Trends Immunol 23: 480–485. 12297419
19. Engering et al (2002) The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168: 2118–2126. 11859097
20. Rappocciolo et al (2006) DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J Immunol 176: 1741–1749. 16424204
21. Koppel et al (2005) DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14. Immunobiology 210: 203–210. 16164027
22. Halary et al (2002) Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17: 653–664. 12433371
23. Zeituni et al (2010) Porphyromonas gingivalis-dendritic cell interactions: consequences for coronary artery disease. J Oral Microbiol 2. doi: 10.3402/jom.v2i0.2127 21523232
24. Baker PJ, Dixon M, Evans RT, Roopenian DC (2000) Heterogeneity of Porphyromonas gingivalis strains in the induction of alveolar bone loss in mice. Oral Microbiol Immunol 15: 27–32. 11155161
25. Neiders ME, Chen PB, Suido H, Reynolds HS, Zambon JJ, et al. (1989) Heterogeneity of virulence among strains of Bacteroides gingivalis. J Periodontal Res 24: 192–198. 2528618
26. Amano A, Sharma A, Sojar HT, Kuramitsu HK, Genco RJ (1994) Effects of temperature stress on expression of fimbriae and superoxide dismutase by Porphyromonas gingivalis. Infect Immun 62: 4682–4685. 7927742
27. Xie H, Cai S, Lamont RJ (1997) Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect Immun 65: 2265–2271. 9169762
28. Davey M, Liu X, Ukai T, Jain V, Gudino C, et al. (2008) Bacterial fimbriae stimulate proinflammatory activation in the endothelium through distinct TLRs. J Immunol 180: 2187–2195. 18250425
29. Hajishengallis et al (2008) Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci U S A 105: 13532–13537. doi: 10.1073/pnas.0803852105 18765807
30. Gringhuis et al (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10: 1081–1088. doi: 10.1038/ni.1778 19718030
31. Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20: 825–852. 11861619
32. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304: 1014–1018. 15143282
33. Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, et al. (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27: 135–144. 17658277
34. Liu X, Yue Y, Li B, Nie Y, Li W, et al. (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315: 1712–1716. 17347412
35. Njoroge et al (1997) A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun 65: 1980–1984. 9125593
36. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43: 5721–5732. 16272510
37. Ravikumar et al (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121: 1649–1660. doi: 10.1242/jcs.025726 18430781
38. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140: 313–326. doi: 10.1016/j.cell.2010.01.028 20144757
39. Klionsky et al (2008) Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4: 849–950. 18758232
40. Xiong J, Xia M, Xu M, Zhang Y, Abais JM, et al. (2013) Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes. J Cell Mol Med.
41. Savina A, Amigorena S (2007) Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 219: 143–156. 17850487
42. Carrion J, Scisci E, Miles B, Sabino GJ, Zeituni AE, et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. J Immunol 189: 3178–3187. doi: 10.4049/jimmunol.1201053 22891282
43. Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, et al. (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A 106: 14564–14569. doi: 10.1073/pnas.0813319106 19667176
44. Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276: 28939–28945. 11384997
45. Kerrigan AM, Brown GD (2009) C-type lectins and phagocytosis. Immunobiology 214: 562–575. doi: 10.1016/j.imbio.2008.11.003 19261355
46. Geijtenbeek TB, Engering A, Van Kooyk Y (2002) DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J Leukoc Biol 71: 921–931. 12050176
47. Kwon et al (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16: 135–144. 11825572
48. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445–544. 22966490
49. Mehta P, Henault J, Kolbeck R, Sanjuan MA (2014) Noncanonical autophagy: one small step for LC3, one giant leap for immunity. Curr Opin Immunol 26: 69–75. doi: 10.1016/j.coi.2013.10.012 24556403
50. Dorn et al (2001) Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect Immun 69: 5698–5708. 11500446
51. Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7: 765–778. 15888080
52. Bashirova AA, Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Eilering JB, et al. (2001) A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193: 671–678. 11257134
53. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5: 527–549. doi: 10.1016/j.chom.2009.05.016 19527881
54. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, et al. (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100: 575–585. 10721994
55. Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, et al. (2005) TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 11: 653–660. 15880118
56. Jotwani R, Cutler CW (2004) Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response. Infect Immun 72: 1725–1732. 14977981
57. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, et al. (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305: 1153–1157. 15326355
58. Miles B, Scisci E, Carrion J, Sabino GJ, Genco CA, et al. (2013) Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen. J Leukoc Biol 94: 281–289. doi: 10.1189/jlb.0213108 23729500
59. Chen M, Wang YH, Wang Y, Huang L, Sandoval H, et al. (2006) Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311: 1160–1164. 16497935
60. Cremer I, Dieu-Nosjean MC, Marechal S, Dezutter-Dambuyant C, Goddard S, et al. (2002) Long-lived immature dendritic cells mediated by TRANCE-RANK interaction. Blood 100: 3646–3655. 12393586
61. Cooney R, Baker J, Brain O, Danis B, Pichulik T, et al. (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16: 90–97. doi: 10.1038/nm.2069 19966812
62. Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, et al. (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12: 863–875. doi: 10.1038/ncb2090 20711182
63. Gibson FC 3rd, Yumoto H, Takahashi Y, Chou HH, Genco CA (2006) Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. J Dent Res 85: 106–121. 16434728
64. Cutler CW, Kalmar JR, Arnold RR (1991) Phagocytosis of virulent Porphyromonas gingivalis by human polymorphonuclear leukocytes requires specific immunoglobulin G. Infect Immun 59: 2097–2104. 2037370
65. Tuominen-Gustafsson et al (2006) Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils. BMC Microbiol 6: 92. 17049082
66. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. 11846609
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 2
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Control of Murine Cytomegalovirus Infection by γδ T Cells
- ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes
- Rational Development of an Attenuated Recombinant Cyprinid Herpesvirus 3 Vaccine Using Prokaryotic Mutagenesis and In Vivo Bioluminescent Imaging
- Direct Binding of Retromer to Human Papillomavirus Type 16 Minor Capsid Protein L2 Mediates Endosome Exit during Viral Infection