Yeast Prions: Proteins Templating Conformation and an Anti-prion System
article has not abstract
Vyšlo v časopise:
Yeast Prions: Proteins Templating Conformation and an Anti-prion System. PLoS Pathog 11(2): e32767. doi:10.1371/journal.ppat.1004584
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004584
Souhrn
article has not abstract
Zdroje
1. Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in S. cerevisiae. Science 264: 566–569. 7909170
2. King CY, Diaz-Avalos R (2004) Protein-only transmission of three yeast prion strains. Nature 428: 319–323. 15029195
3. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428: 323–328. 15029196
4. Brachmann A, Baxa U, Wickner RB (2005) Prion generation in vitro: amyloid of Ure2p is infectious. Embo J 24: 3082–3092. 16096644
5. Liebman SW, Chernoff YO (2012) Prions in yeast. Genetics 191: 1041–1072. doi: 10.1534/genetics.111.137760 22879407
6. Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, et al. (2013) Amyloids and yeast prion biology. Biochemistry 52: 1514–1527. doi: 10.1021/bi301686a 23379365
7. Saupe SJ (2011) The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Sem Cell & Dev Biol 22: 460–468. doi: 10.1016/j.semcdb.2011.02.019 21334447
8. Kraus A, Groveman BR, Caughey B (2013) Prions and the potential transmissibility of protein misfolding diseases. Ann Rev Microbiol 67: 543–564. doi: 10.1146/annurev-micro-092412-155735 23808331
9. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144: 1375–1386. 8978027
10. King CY (2001) Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J Mol Biol 307: 1247–1260. 11292339
11. McGlinchey R, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci USA 108: 5337–5341. doi: 10.1073/pnas.1102762108 21402947
12. Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB (2005) Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci U S A 102: 10575–10580. 16024723
13. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancster AK, et al. (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482: 363–368. doi: 10.1038/nature10875 22337056
14. Edskes HE, Khamar HJ, Winchester C-L, Greenler AJ, Zhou A, et al. (2014) Sporadic distribution of prion-forming ability of Sup35p from yeasts and fungi. Genetics epub ahead of print.
15. Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Natl Acad Sci USA 103: 19754–19759. 17170131
16. Gorkovskiy A, Thurber KR, Tycko R, Wickner RB (2014) Locating the folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proc Natl Acad Sci USA 111: in press. doi: 10.1073/pnas.1421566112 25552562
17. Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. Plos Biol 2: 1582–1590.
18. Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T (2007) Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol 5: 611–618. 17632572
19. Kryndushkin D, Shewmaker F, Wickner RB (2008) Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO J 27: 2725–2735. doi: 10.1038/emboj.2008.198 18833194
20. Edskes HK, Gray VT, Wickner RB (1999) The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc Natl Acad Sci USA 96: 1498–1503. 9990052
21. Wickner RB, Beszonov E, Bateman DA (2014) Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1421566112 25552562
22. Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, et al. (2009) Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 23: 451–463. doi: 10.1096/fj.08-117614 18854435
23. Gardner RG, Nelson ZW, Gottschling DE (2005) Degradation-mediated protein quality control in the nucleus. Cell 120: 803–815. 15797381
24. Specht S, Miller SBM, Mogk A, Bukau B (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 195: 617–629. doi: 10.1083/jcb.201106037 22065637
25. Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spaciotemporal distribution of protein aggregates. Mol Biol Cell 23: 3041–3056. doi: 10.1091/mbc.E12-03-0194 22718905
26. Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F (2012) A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol Microbiol Epub ahead of print.
27. Bessen RA, Marsh RF (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66: 2096–2101. 1347795
28. Liebman SW, Chernoff YO (2012) Prions in yeast. Genetics 191: 1041–1072. doi: 10.1534/genetics.111.137760 22879407
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Control of Murine Cytomegalovirus Infection by γδ T Cells
- ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes
- Rational Development of an Attenuated Recombinant Cyprinid Herpesvirus 3 Vaccine Using Prokaryotic Mutagenesis and In Vivo Bioluminescent Imaging
- Direct Binding of Retromer to Human Papillomavirus Type 16 Minor Capsid Protein L2 Mediates Endosome Exit during Viral Infection