#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

HITS-CLIP Analysis Uncovers a Link between the Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Protein and Host Pre-mRNA Metabolism


During viral replication, the oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV) modulates both host and viral gene expression. KSHV ORF57 is a multifunctional posttranscriptional regulator that is essential for viral replication and stabilizes viral RNAs. Previous studies demonstrated that ORF57 RNA-binding is essential for its activity, but the full spectrum of ORF57 targets are unknown. Here we employed a high-throughput analysis to identify RNA fragments bound by ORF57 during lytic reactivation. As expected, we found targets that mapped to the viral genome, and we further uncovered novel host targets, a subset of which had ORF57 bound near their 5´ ends. Further examination of this subset demonstrated that ORF57 bound preferentially at the 5´-most exon-intron boundary. ORF57 affected the pre-mRNA abundance from these genes, most likely by stabilizing otherwise unstable inefficiently spliced pre-mRNAs. In at least one case, this stabilization led to increases in mRNA expression of the host gene. We suggest that KSHV employs the same mechanism to stabilize intronless viral RNAs and cellular unspliced pre-mRNAs to modulate viral and host gene expression during lytic reactivation.


Vyšlo v časopise: HITS-CLIP Analysis Uncovers a Link between the Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Protein and Host Pre-mRNA Metabolism. PLoS Pathog 11(2): e32767. doi:10.1371/journal.ppat.1004652
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004652

Souhrn

During viral replication, the oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV) modulates both host and viral gene expression. KSHV ORF57 is a multifunctional posttranscriptional regulator that is essential for viral replication and stabilizes viral RNAs. Previous studies demonstrated that ORF57 RNA-binding is essential for its activity, but the full spectrum of ORF57 targets are unknown. Here we employed a high-throughput analysis to identify RNA fragments bound by ORF57 during lytic reactivation. As expected, we found targets that mapped to the viral genome, and we further uncovered novel host targets, a subset of which had ORF57 bound near their 5´ ends. Further examination of this subset demonstrated that ORF57 bound preferentially at the 5´-most exon-intron boundary. ORF57 affected the pre-mRNA abundance from these genes, most likely by stabilizing otherwise unstable inefficiently spliced pre-mRNAs. In at least one case, this stabilization led to increases in mRNA expression of the host gene. We suggest that KSHV employs the same mechanism to stabilize intronless viral RNAs and cellular unspliced pre-mRNAs to modulate viral and host gene expression during lytic reactivation.


Zdroje

1. Staudt MR, Dittmer DP (2003) Viral latent proteins as targets for Kaposi“s sarcoma and Kaposi”s sarcoma-associated herpesvirus (KSHV/HHV-8) induced lymphoma. Curr Drug Targets Infect Disord 3: 129–135. 12769790

2. Ruocco E, Ruocco V, Tornesello ML, Gambardella A, Wolf R, et al. (2013) Kaposi's sarcoma: etiology and pathogenesis, inducing factors, causal associations, and treatments: facts and controversies. Clin Dermatol 31: 413–422. doi: 10.1016/j.clindermatol.2013.01.008 23806158

3. Dittmer DP, Damania B (2013) Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)—an update. Current Opinion in Virology 3: 238–244. doi: 10.1016/j.coviro.2013.05.012 23769237

4. Mesri EA, Cesarman E, Boshoff C (2010) Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 10: 707–719. doi: 10.1038/nrc2888 20865011

5. Toth Z, Brulois K, Jung JU (2013) The chromatin landscape of Kaposi's sarcoma-associated herpesvirus. Viruses 5: 1346–1373. doi: 10.3390/v5051346 23698402

6. Lieberman PM (2013) Keeping it quiet: chromatin controlof gammaherpesvirus latency. Nat Rev Micro 11: 863–875. doi: 10.1038/nrmicro3135 24192651

7. Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, et al. (2014) KSHV 2.0: A Comprehensive Annotation of the Kaposi's Sarcoma-Associated Herpesvirus Genome Using Next-Generation Sequencing Reveals Novel Genomic and Functional Features. PLoS Pathog 10: e1003847. doi: 10.1371/journal.ppat.1003847 24453964

8. Brulois K, Jung JU (2014) Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev. doi:10.1016/j.cytogfr.2014.06.001.

9. Zhu Y, Haecker I, Yang Y, Gao S-J, Renne R (2013) γ-Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Current Opinion in Virology 3: 266–275. doi: 10.1016/j.coviro.2013.05.013 23743127

10. Schumann S, Jackson BR, Baquero-Perez B, Whitehouse A (2013) Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 5: 1901–1923. doi: 10.3390/v5081901 23896747

11. Conrad NK (2009) Posttranscriptional gene regulation in Kaposi's sarcoma-associated herpesvirus. Adv Appl Microbiol 68: 241–261. doi: 10.1016/S0065-2164(09)01206-4 19426857

12. Majerciak V, Zheng Z-M (2009) Kaposi's sarcoma-associated herpesvirus ORF57 in viral RNA processing. Front Biosci 14: 1516–1528. 19273144

13. Swaminathan S (2005) Post-transcriptional gene regulation by gamma herpesviruses. J Cell Biochem 95: 698–711. doi: 10.1002/jcb.20465 15880690

14. Sandri-Goldin RM (2008) The many roles of the regulatory protein ICP27 during herpes simplex virus infection. Front Biosci 13: 5241–5256. 18508584

15. Toth Z, Stamminger T (2008) The human cytomegalovirus regulatory protein UL69 and its effect on mRNA export. Front Biosci 13: 2939–2949. 17981767

16. Malik P, Blackbourn DJ, Clements JB (2004) The evolutionarily conserved Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with REF protein and acts as an RNA export factor. J Biol Chem 279: 33001–33011. doi: 10.1074/jbc.M313008200 15155762

17. Jackson BR, Boyne JR, Noerenberg M, Taylor A, Hautbergue GM, et al. (2011) An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in herpesvirus intronless mRNA export. PLoS Pathog 7: e1002138. doi: 10.1371/journal.ppat.1002138 21814512

18. Boyne JR, Colgan KJ, Whitehouse A (2008) Recruitment of the complete hTREX complex is required for Kaposi's sarcoma-associated herpesvirus intronless mRNA nuclear export and virus replication. PLoS Pathog 4: e1000194. doi: 10.1371/journal.ppat.1000194 18974867

19. Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Current Opinion in Cell Biology 17: 269–273. doi: 10.1016/j.ceb.2005.04.011 15901496

20. Katahira J (2012) mRNA export and the TREX complex. BBA—Gene Regulatory Mechanisms 1819: 507–513. doi: 10.1016/j.bbagrm.2011.12.001 25628811

21. Cheng H, Dufu K, Lee C-S, Hsu JL, Dias A, et al. (2006) Human mRNA export machinery recruited to the 5' end of mRNA. Cell 127: 1389–1400. doi: 10.1016/j.cell.2006.10.044 17190602

22. Zheng Z-M (2003) Split genes and their expression in Kaposi's sarcoma-associated herpesvirus. Rev Med Virol 13: 173–184. doi: 10.1002/rmv.387 12740832

23. Pilkington GR, Majerciak V, Bear J, Uranishi H, Zheng ZM, et al. (2012) The Kaposi's Sarcoma-associated Herpesvirus ORF57 Is Not a bona fide Export Factor. J Virol. doi:10.1128/JVI.00606-12.

24. Majerciak V, Yamanegi K, Nie SH, Zheng Z-M (2006) Structural and functional analyses of Kaposi sarcoma-associated herpesvirus ORF57 nuclear localization signals in living cells. J Biol Chem 281: 28365–28378. doi: 10.1074/jbc.M603095200 16829516

25. Majerciak V, Uranishi H, Kruhlak M, Pilkington GR, Massimelli MJ, et al. (2011) Kaposi's sarcoma-associated herpesvirus ORF57 interacts with cellular RNA export cofactors RBM15 and OTT3 to promote expression of viral ORF59. J Virol 85: 1528–1540. doi: 10.1128/JVI.01709-10 21106733

26. Massimelli MJ, Kang J-G, Majerciak V, Le S-Y, Liewehr DJ, et al. (2011) Stability of a long noncoding viral RNA depends on a 9-nt core element at the RNA 5' end to interact with viral ORF57 and cellular PABPC1. Int J Biol Sci 7: 1145–1160. 22043172

27. Sahin BB, Patel D, Conrad NK (2010) Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog 6: e1000799. doi: 10.1371/journal.ppat.1000799 20221435

28. Sei E, Conrad NK (2011) Delineation of a core RNA element required for Kaposi's sarcoma-associated herpesvirus ORF57 binding and activity. Virology 419: 107–116. doi: 10.1016/j.virol.2011.08.006 21889182

29. Gupta AK, Ruvolo V, Patterson C, Swaminathan S (2000) The human herpesvirus 8 homolog of Epstein-Barr virus SM protein (KS-SM) is a posttranscriptional activator of gene expression. J Virol 74: 1038–1044. 10623771

30. Verma D, Kim EA, Swaminathan S (2013) A cell-based screening assay for antiviral compounds targeting the ability of herpesvirus post-transcriptional regulatory proteins to stabilize viral mRNAs. J Virol. doi:10.1128/JVI.01644-13.

31. Nekorchuk M, Han Z, Hsieh T-T, Swaminathan S (2007) Kaposi's sarcoma-associated herpesvirus ORF57 protein enhances mRNA accumulation independently of effects on nuclear RNA export. J Virol 81: 9990–9998. doi: 10.1128/JVI.00896-07 17609285

32. Taylor A, Jackson BR, Noerenberg M, Hughes DJ, Boyne JR, et al. (2011) Mutation of a C-terminal motif affects Kaposi's sarcoma-associated herpesvirus ORF57 RNA binding, nuclear trafficking, and multimerization. J Virol 85: 7881–7891. doi: 10.1128/JVI.00138-11 21593148

33. Kirshner JR, Lukac DM, Chang J, Ganem D (2000) Kaposi's sarcoma-associated herpesvirus open reading frame 57 encodes a posttranscriptional regulator with multiple distinct activities. J Virol 74: 3586–3597. 10729134

34. Malik P, Blackbourn DJ, Cheng MF, Hayward GS, Clements JB (2004) Functional co-operation between the Kaposi's sarcoma-associated herpesvirus ORF57 and ORF50 regulatory proteins. J Gen Virol 85: 2155–2166. doi: 10.1099/vir.0.79784-0 15269354

35. Majerciak V, Yamanegi K, Zheng Z-M (2006) Gene structure and expression of Kaposi's sarcoma-associated herpesvirus ORF56, ORF57, ORF58, and ORF59. J Virol 80: 11968–11981. doi: 10.1128/JVI.01394-06 17020939

36. Li D-J, Verma D, Swaminathan S (2012) Binding of Cellular Export Factor REF/Aly by Kaposi's Sarcoma-Associated Herpesvirus (KSHV) ORF57 Protein Is Not Required for Efficient KSHV Lytic Replication. J Virol 86: 9866–9874. doi: 10.1128/JVI.01190-12 22761374

37. Massimelli MJ, Majerciak V, Kruhlak M, Zheng ZM (2012) Interplay between PABPC1 and KSHV ORF57 in accumulation of PAN, a viral lncRNA. J Virol. doi:10.1128/JVI.01693-12.

38. Han Z, Swaminathan S (2006) Kaposi's sarcoma-associated herpesvirus lytic gene ORF57 is essential for infectious virion production. J Virol 80: 5251–5260. doi: 10.1128/JVI.02570-05 16699005

39. Majerciak V, Pripuzova N, McCoy JP, Gao S-J, Zheng Z-M (2007) Targeted disruption of Kaposi's sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol 81: 1062–1071. doi: 10.1128/JVI.01558-06 17108026

40. Conrad NK, Mili S, Marshall EL, Shu M-D, Steitz JA (2006) Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell 24: 943–953. doi: 10.1016/j.molcel.2006.10.029 17189195

41. Bresson SM, Conrad NK (2013) The Human Nuclear Poly(A)-Binding Protein Promotes RNA Hyperadenylation and Decay. PLoS Genet 9: e1003893. doi: 10.1371/journal.pgen.1003893.s009 24146636

42. Majerciak V, Yamanegi K, Allemand E, Kruhlak M, Krainer AR, et al. (2008) Kaposi's sarcoma-associated herpesvirus ORF57 functions as a viral splicing factor and promotes expression of intron-containing viral lytic genes in spliceosome-mediated RNA splicing. J Virol 82: 2792–2801. doi: 10.1128/JVI.01856-07 18184716

43. Kang J-G, Pripuzova N, Majerciak V, Kruhlak M, Le S-Y, et al. (2011) Kaposi's sarcoma-associated herpesvirus ORF57 promotes escape of viral and human interleukin-6 from microRNA-mediated suppression. J Virol 85: 2620–2630. doi: 10.1128/JVI.02144-10 21209110

44. Jackson BR, Noerenberg M, Whitehouse A (2014) A Novel Mechanism Inducing Genome Instability in Kaposi's Sarcoma-Associated Herpesvirus Infected Cells. PLoS Pathog 10: e1004098. doi: 10.1371/journal.ppat.1004098.s007 24788796

45. Boyne JR, Jackson BR, Taylor A, Macnab SA, Whitehouse A (2010) Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J 29: 1851–1864. doi: 10.1038/emboj.2010.77 20436455

46. Hunter OV, Sei E, Richardson RB, Conrad NK (2013) ChIP-chip analysis suggests functional cooperation between Kaposi's sarcoma-associated herpesvirus ORF57 and K-bZIP. J Virol. doi:10.1128/JVI.03459-12.

47. Palmeri D, Spadavecchia S, Carroll KD, Lukac DM (2007) Promoter- and cell-specific transcriptional transactivation by the Kaposi's sarcoma-associated herpesvirus ORF57/Mta protein. J Virol 81: 13299–13314. doi: 10.1128/JVI.00732-07 17913801

48. Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, et al. (2012) Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through NUP62, inhibiting host nucleocytoplasmic transport pathways. Journal of Biological Chemistry. doi:10.1074/jbc.M111.331777.

49. Conrad NK (2008) Chapter 15. Co-immunoprecipitation techniques for assessing RNA-protein interactions in vivo. Meth Enzymol 449: 317–342. doi: 10.1016/S0076-6879(08)02415-4 19215765

50. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10: 1692–1694. doi: 10.1261/rna.7151404 15388877

51. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, et al. (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456: 464–469. doi: 10.1038/nature07488 18978773

52. Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37: 376–386. doi: 10.1016/j.ymeth.2005.07.018 16314267

53. Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, et al. (2003) Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77: 4205–4220. 12634378

54. Speck SH, Ganem D (2010) Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8: 100–115. doi: 10.1016/j.chom.2010.06.014 20638646

55. Malik P, Clements JB (2004) Protein kinase CK2 phosphorylation regulates the interaction of Kaposi's sarcoma-associated herpesvirus regulatory protein ORF57 with its multifunctional partner hnRNP K. Nucleic Acids Res 32: 5553–5569. doi: 10.1093/nar/gkh876 15486205

56. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, et al. (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14: 459–468. doi: 10.1038/nn.2779 21358643

57. Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29: 607–614. doi: 10.1038/nbt.1873 21633356

58. Sun R, Lin S-F, Gradoville L, Miller G (1996) Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 93: 11883–11888. 8876232

59. Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, et al. (2003) Kaposi's sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: identification of the ori-Lyt and association of K8 bZip protein with the origin. J Virol 77: 5578–5588. 12719550

60. AuCoin DP, Colletti KS, Xu Y, Cei SA, Pari GS (2002) Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication. J Virol 76: 7890–7896. 12097603

61. Nicholas J, Zong JC, Alcendor DJ, Ciufo DM, Poole LJ, et al. (1998) Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. J Natl Cancer Inst Monographs: 79–88.

62. Taylor JL, Bennett HN, Snyder BA, Moore PS, Chang Y (2005) Transcriptional analysis of latent and inducible Kaposi's sarcoma-associated herpesvirus transcripts in the K4 to K7 region. J Virol 79: 15099–15106. doi: 10.1128/JVI.79.24.15099-15106.2005 16306581

63. Wang Y, Li H, Chan MY, Zhu FX, Lukac DM, et al. (2004) Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol 78: 8615–8629. doi: 10.1128/JVI.78.16.8615-8629.2004 15280471

64. Ritchie MF, Zhou Y, Soboloff J (2011) WT1/EGR1-mediated control of STIM1 expression and function in cancer cells. Front Biosci 16: 2402–2415. 21622185

65. Zwang Y, Oren M, Yarden Y (2012) Consistency test of the cell cycle: roles for p53 and EGR1. Cancer Res 72: 1051–1054. doi: 10.1158/0008-5472.CAN-11-3382 22315347

66. Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA (2012) The role of tristetraprolin in cancer and inflammation. Frontiers in bioscience … 136: 1669–1679. doi: 10.1053/j.gastro.2009.01.010

67. Tijchon E, Havinga J, van Leeuwen FN, Scheijen B (2012) B-lineage transcription factors and cooperating gene lesions required for leukemia development. 27: 541–552. doi: 10.1038/leu.2012.293 23047478

68. Winkler GS (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222: 66–72. doi: 10.1002/jcp.21919 19746446

69. Park SJ, Kim HJ, Lee JS, Cho HR, Kwon B (2012) Reverse signaling through the co-stimulatory ligand, CD137L, as a critical mediator of sterile inflammation. Mol Cells 33: 533–537. doi: 10.1007/s10059-012-0077-3 22526397

70. Zhao S, Xing Y, Natkunam Y (2014) Use of CD137 ligand expression in the detection of small B-cell lymphomas involving the bone marrow. Hum Pathol 45: 1024–1030. doi: 10.1016/j.humpath.2013.12.019 24746207

71. Cheuk A, Mufti GJ, Guinn B (2003) Role of 4-1BB: 4-1BB ligand in cancer immunotherapy. Cancer Gene Ther. doi:10.1038/sj.cgt.7700670.

72. Sakharkar MK, Chow VTK, Kangueane P (2004) Distributions of exons and introns in the human genome. In Silico Biol (Gedrukt) 4: 387–393. 15217358

73. Jackson BR, Noerenberg M, Whitehouse A (2012) The Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein and Its Multiple Roles in mRNA Biogenesis. Front Microbio 3: 59. doi: 10.3389/fmicb.2012.00059

74. Glaunsinger B, Ganem D (2004) Lytic KSHV Infection Inhibits Host Gene Expression by Accelerating Global mRNA Turnover. Mol Cell 13: 713–723. doi: 10.1016/S1097-2765(04)00091-7 15023341

75. Dölken L, Ruzsics Z, Rädle B, Friedel CC, Zimmer R, et al. (2008) High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14: 1959–1972. doi: 10.1261/rna.1136108 18658122

76. Zeiner GM, Cleary MD, Fouts AE, Meiring CD, Mocarski ES, et al. (2008) RNA analysis by biosynthetic tagging using 4-thiouracil and uracil phosphoribosyltransferase. Methods Mol Biol 419: 135–146. doi: 10.1007/978-1-59745-033-1_9 18369980

77. Hardwicke MA, Sandri-Goldin RM (1994) The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68: 4797–4810. 8035480

78. Smith RWP, Malik P, Clements JB (2005) The herpes simplex virus ICP27 protein: a multifunctional post-transcriptional regulator of gene expression. Biochem Soc Trans 33: 499–501. doi: 10.1042/BST0330499 15916551

79. Hardy WR, Sandri-Goldin RM (1994) Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol 68: 7790–7799. 7966568

80. Sukhatme VP, Kartha S, Toback FG, Taub R, Hoover RG, et al. (1987) A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res 1: 343–355. 3130602

81. Wang Y, Tang Q, Maul GG, Yuan Y (2006) Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: dual role of replication and transcription activator. J Virol 80: 12171–12186. doi: 10.1128/JVI.00990-06 17020951

82. Rennekamp AJ, Lieberman PM (2011) Initiation of Epstein-Barr virus lytic replication requires transcription and the formation of a stable RNA-DNA hybrid molecule at OriLyt. J Virol 85: 2837–2850. doi: 10.1128/JVI.02175-10 21191028

83. Wang T, Xie Y, Xiao G (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. 15: 1–13. doi: 10.1186/gb-2014-15-1-r11 24398258

84. Stubbs SH, Hunter OV, Hoover A, Conrad NK (2012) Viral factors reveal a role for REF/Aly in nuclear RNA stability. Mol Cell Biol 32: 1260–1270. doi: 10.1128/MCB.06420-11 22290432

85. Beaulieu YB, Kleinman CL, Landry-Voyer A-M, Majewski J, Bachand F (2012) Polyadenylation-Dependent Control of Long Noncoding RNA Expression by the Poly(A)-Binding Protein Nuclear 1. PLoS Genet 8: e1003078. doi: 10.1371/journal.pgen.1003078.g007 23166521

86. Majerciak V, Lu M, Li X, Zheng Z-M (2014) Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma-associated herpesvirus ORF57 protein is required for RNA splicing. RNA. doi:10.1261/rna.045500.114.

87. Verma D, Bais S, Gaillard M, Swaminathan S (2010) Epstein-Barr virus SM protein utilizes cellular splicing factor SRp20 to mediate alternative splicing. J Virol. doi:10.1128/JVI.01359-10.

88. Verma D, Swaminathan S (2008) Epstein-Barr virus SM protein functions as an alternative splicing factor. J Virol 82: 7180–7188. doi: 10.1128/JVI.00344-08 18463151

89. Pagel J-I, Deindl E (2011) Early growth response 1—a transcription factor in the crossfire of signal transduction cascades. Indian J Biochem Biophys 48: 226–235. 22053691

90. Shan J, Balasubramanian MN, Donelan W, Fu L, Hayner J, et al. (2014) A MEK-Dependent Transcriptional Program Controls Activation of the Early Growth Response 1 (EGR1) Gene During Amino Acid Limitation. Journal of Biological Chemistry 289: 24665–24679. doi: 10.1074/jbc.M114.565028 25028509

91. Damgaard CK, Kahns S, Lykke-Andersen S, Nielsen AL, Jensen TH, et al. (2008) A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol Cell 29: 271–278. doi: 10.1016/j.molcel.2007.11.035 18243121

92. Kim H, Erickson B, Luo W, Seward D, Graber JH, et al. (2010) Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat Struct Mol Biol. doi:10.1038/nsmb.1913.

93. Bieberstein NI, Oesterreich FC, Straube K, Neugebauer KM (2012) First exon length controls active chromatin signatures and transcription. CellReports 2: 62–68. doi: 10.1016/j.celrep.2012.05.019

94. Fong YW, Zhou Q (2001) Stimulatory effect of splicing factors on transcriptional elongation. Nature 414: 929–933. doi: 10.1038/414929a 11780068

95. Chanarat S, Seizl M, Strasser K (2011) The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev: 1–13. doi:10.1101/gad.623411.

96. Ji X, Zhou Y, Pandit S, Huang J, Li H, et al. (2013) SR Proteins Collaborate with 7SK and Promoter-Associated Nascent RNA to Release Paused Polymerase. Cell 153: 855–868. doi: 10.1016/j.cell.2013.04.028 23663783

97. Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu X-D (2008) The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15: 819–826. doi: 10.1038/nsmb.1461 18641664

98. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–W208. doi: 10.1093/nar/gkp335 19458158

99. Han Z, Verma D, Hilscher C, Dittmer DP, Swaminathan S (2009) General and target-specific RNA binding properties of Epstein-Barr virus SM posttranscriptional regulatory protein. J Virol 83: 11635–11644. doi: 10.1128/JVI.01483-09 19726500

100. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873–881. doi: 10.1093/bioinformatics/btq057 20147302

101. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859–1875. doi: 10.1093/bioinformatics/bti310 15728110

102. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106. doi: 10.1186/gb-2010-11-10-r106 20979621

103. Smit A, Hubley R, Green P (2010) RepeatMasker Open3.0.

104. Majerciak V, Kruhlak M, Dagur PK, McCoy JP, Zheng Z-M (2010) Caspase-7 cleavage of Kaposi sarcoma-associated herpesvirus ORF57 confers a cellular function against viral lytic gene expression. Journal of Biological Chemistry 285: 11297–11307. doi: 10.1074/jbc.M109.068221 20159985

105. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14: 178–192. doi: 10.1093/bib/bbs017 22517427

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#