G-Quadruplexes in Pathogens: A Common Route to Virulence Control?
DNA can form several secondary structures besides the classic double helix:
one that has received much attention in recent years is the G-quadruplex (G4). This is a stable four-stranded structure formed by the stacking of quartets of guanine bases. Recent work has convincingly shown that G4s can form in vivo as well as in vitro and can affect both replication and transcription of DNA. They also play important roles at G-rich telomeres. Now, a spate of exciting reports has begun to reveal roles for G4 structures in virulence processes in several important microbial pathogens of humans. Interestingly, these come from a range of kingdoms—bacteria and protozoa as well as viruses—and all facilitate immune evasion in different ways. In particular, roles for G4s have been posited in the antigenic variation systems of bacteria and protozoa, as well as in the silencing of at least two major human viruses, human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV). Although antigenic variation and the silencing of latent viruses are quite distinct from one another, both are routes to immune evasion and the maintenance of chronic infections. Thus, highly disparate pathogens can use G4 motifs to control DNA/RNA dynamics in ways that are relevant to common virulence phenotypes. This review explores the evidence for G4 biology in such processes across a range of important human pathogens.
Vyšlo v časopise:
G-Quadruplexes in Pathogens: A Common Route to Virulence Control?. PLoS Pathog 11(2): e32767. doi:10.1371/journal.ppat.1004562
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004562
Souhrn
DNA can form several secondary structures besides the classic double helix:
one that has received much attention in recent years is the G-quadruplex (G4). This is a stable four-stranded structure formed by the stacking of quartets of guanine bases. Recent work has convincingly shown that G4s can form in vivo as well as in vitro and can affect both replication and transcription of DNA. They also play important roles at G-rich telomeres. Now, a spate of exciting reports has begun to reveal roles for G4 structures in virulence processes in several important microbial pathogens of humans. Interestingly, these come from a range of kingdoms—bacteria and protozoa as well as viruses—and all facilitate immune evasion in different ways. In particular, roles for G4s have been posited in the antigenic variation systems of bacteria and protozoa, as well as in the silencing of at least two major human viruses, human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV). Although antigenic variation and the silencing of latent viruses are quite distinct from one another, both are routes to immune evasion and the maintenance of chronic infections. Thus, highly disparate pathogens can use G4 motifs to control DNA/RNA dynamics in ways that are relevant to common virulence phenotypes. This review explores the evidence for G4 biology in such processes across a range of important human pathogens.
Zdroje
1. Bang (1910) Untersuchungen über die Guanylsäure. Biochemische Zeitschrift 26: 293–311.
2. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48: 2013–2018. 13947099
3. Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90: 1149–1171. doi: 10.1016/j.biochi.2008.02.020 18355457
4. Yang D, Okamoto K (2010) Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem 2: 619–646. 20563318
5. Phan AT, Kuryavyi V, Patel DJ (2006) DNA architecture: from G to Z. Curr Opin Struct Biol 16: 288–298. 16714104
6. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Research 34: 5402–5415. 17012276
7. Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Research 34: 3887–3896. 16914419
8. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Research 33: 2908–2916. 15914667
9. Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Research 35: 406–413. 17169996
10. Verma A, Halder K, Halder R, Yadav VK, Rawal P, et al. (2008) Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J Med Chem 51: 5641–5649. doi: 10.1021/jm800448a 18767830
11. Smith JS, Chen Q, Yatsunyk LA, Nicoludis JM, Garcia MS, et al. (2011) Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol 18: 478–485. doi: 10.1038/nsmb.2033 21399640
12. Martadinata H, Heddi B, Lim KW, Phan AT (2011) Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks. Biochemistry 50: 6455–6461. doi: 10.1021/bi200569f 21671673
13. Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28: 2503–2510. doi: 10.1038/emboj.2009.166 19629047
14. Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 35: 403–413. doi: 10.1016/j.molcel.2009.06.025 19716786
15. Biffi G, Tannahill D, Balasubramanian S (2012) An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J Am Chem Soc 134: 11974–11976. doi: 10.1021/ja305734x 22780456
16. Simonsson T, Pecinka P, Kubista M (1998) DNA tetraplex formation in the control region of c-myc. Nucleic Acids Research 26: 1167–1172. 9469822
17. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99: 11593–11598. 12195017
18. Kruisselbrink E, Guryev V, Brouwer K, Pontier DB, Cuppen E, et al. (2008) Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr Biol 18: 900–905. doi: 10.1016/j.cub.2008.05.013 18538569
19. Ribeyre C, Lopes J, Boulé J-B, Piazza A, Guédin A, et al. (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5: e1000475. doi: 10.1371/journal.pgen.1000475 19424434
20. London TBC, Barber LJ, Mosedale G, Kelly GP, Balasubramanian S, et al. (2008) FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J Biol Chem 283: 36132–36139. doi: 10.1074/jbc.M808152200 18978354
21. De S, Michor F (2011) DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 18: 950–955. doi: 10.1038/nsmb.2089 21725294
22. Drygin D, Siddiqui-Jain A, O'Brien S, Schwaebe M, Lin A, et al. (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69: 7653–7661. doi: 10.1158/0008-5472.CAN-09-1304 19738048
23. Folini M, Venturini L, Cimino-Reale G, Zaffaroni N (2011) Telomeres as targets for anticancer therapies. Expert Opin Ther Targets 15: 579–593. doi: 10.1517/14728222.2011.556621 21288186
24. Cahoon LA, Seifert HS (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science 325: 764–767. doi: 10.1126/science.1175653 19661435
25. Kuryavyi V, Cahoon LA, Seifert HS, Patel DJ (2012) RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5' end-stacked dimeric parallel G-quadruplexes. Structure 20: 2090–2102. doi: 10.1016/j.str.2012.09.013 23085077
26. Cahoon LA, Manthei KA, Rotman E, Keck JL, Seifert HS (2013) Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation. J Bacteriol 195: 2255–2261. doi: 10.1128/JB.02217-12 23475972
27. Kouzine F, Sanford S, Elisha-Feil Z, Levens D (2008) The functional response of upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol 15: 146–154. doi: 10.1038/nsmb.1372 18193062
28. Kouzine F, Levens D (2007) Supercoil-driven DNA structures regulate genetic transactions. Front Biosci 12: 4409–4423. 17485385
29. Sun D, Hurley LH (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 52: 2863–2874. doi: 10.1021/jm900055s 19385599
30. Cahoon LA, Seifert HS (2013) Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS Pathog 9: e1003074. doi: 10.1371/journal.ppat.1003074 23349628
31. Wörmann ME, Horien CL, Bennett JS, Jolley KA, Maiden MCJ, et al. (2014) Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences. BMC Genomics 15: 253. doi: 10.1186/1471-2164-15-253 24690385
32. Walia R, Chaconas G (2013) Suggested role for G4 DNA in recombinational switching at the antigenic variation locus of the Lyme disease spirochete. PLoS ONE 8: e57792. doi: 10.1371/journal.pone.0057792 23469068
33. Mir T, Huang SH, Kobryn K (2013) The telomere resolvase of the Lyme disease spirochete, Borrelia burgdorferi, promotes DNA single-strand annealing and strand exchange. Nucleic Acids Research 41: 10438–10448. doi: 10.1093/nar/gkt832 24049070
34. Rawal P, Kummarasetti VBR, Ravindran J, Kumar N, Halder K, et al. (2006) Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 16: 644–655. 16651665
35. Du X, Wojtowicz D, Bowers AA, Levens D, Benham CJ, et al. (2013) The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli. Nucleic Acids Research 41: 5965–5977. doi: 10.1093/nar/gkt308 23620297
36. Glover L, Alsford S, Horn D (2013) DNA break site at fragile subtelomeres determines probability and mechanism of antigenic variation in African trypanosomes. PLoS Pathog 9: e1003260. doi: 10.1371/journal.ppat.1003260 23555264
37. Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8: 378–384. 15996895
38. Voss TS, Bozdech Z, Bartfai R (2014) Epigenetic memory takes center stage in the survival strategy of malaria parasites. Curr Opin Microbiol 20C: 88–95.
39. Smargiasso N, Gabelica V, Damblon C, Rosu F, De Pauw E, et al. (2009) Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes. BMC Genomics 10: 362. doi: 10.1186/1471-2164-10-362 19660104
40. Merrick CJ, Huttenhower C, Buckee C, Amambua-Ngwa A, Gomez-Escobar N, et al. (2012) Epigenetic dysregulation of virulence gene expression in severe Plasmodium falciparum malaria. J Infect Dis 205: 1593–1600. doi: 10.1093/infdis/jis239 22448008
41. Rottmann M, Lavstsen T, Mugasa JP, Kaestli M, Jensen ATR, et al. (2006) Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children. Infect Immun 74: 3904–3911. 16790763
42. Kyriacou HM, Stone GN, Challis RJ, Raza A, Lyke KE, et al. (2006) Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia. Mol Biochem Parasitol 150: 211–218. 16996149
43. Guizetti J, Scherf A (2013) Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell Microbiol 15: 718–726. doi: 10.1111/cmi.12115 23351305
44. Sarkies P, Reams C, Simpson LJ, Sale JE (2010) Epigenetic instability due to defective replication of structured DNA. Mol Cell 40: 703–713. doi: 10.1016/j.molcel.2010.11.009 21145480
45. Sarkies P, Murat P, Phillips LG, Patel KJ, Balasubramanian S, et al. (2012) FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Research 40: 1485–1498. doi: 10.1093/nar/gkr868 22021381
46. Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, et al. (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497: 458–462. doi: 10.1038/nature12149 23657261
47. Tuteja R (2010) Genome wide identification of Plasmodium falciparum helicases: a comparison with human host. Cell Cycle 9: 104–120. 20016272
48. De Cian A, Grellier P, Mouray E, Depoix D, Bertrand H, et al. (2008) Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds. Chembiochem 9: 2730–2739. doi: 10.1002/cbic.200800330 18924216
49. Perrone R, Nadai M, Frasson I, Poe JA, Butovskaya E, et al. (2013) A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J Med Chem 56: 6521–6530. doi: 10.1021/jm400914r 23865750
50. Amrane S, Kerkour A, Bedrat A, Vialet B, Andreola M-L, et al. (2014) Topology of a DNA G-Quadruplex Structure Formed in the HIV-1 Promoter: A Potential Target for Anti-HIV Drug Development. J Am Chem Soc 136: 5249–5252. doi: 10.1021/ja501500c 24649937
51. Piekna-Przybylska D, Sullivan MA, Sharma G, Bambara RA (2014) U3 region in the HIV-1 genome adopts a G-quadruplex structure in its RNA and DNA sequence. Biochemistry 53: 2581–2593. doi: 10.1021/bi4016692 24735378
52. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, et al. (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26: 412–423. 17245431
53. Jiang G, Espeseth A, Hazuda DJ, Margolis DM (2007) c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 81: 10914–10923. 17670825
54. Perrone R, Nadai M, Poe JA, Frasson I, Palumbo M, et al. (2013) Formation of a unique cluster of G-quadruplex structures in the HIV-1 Nef coding region: implications for antiviral activity. PLoS ONE 8: e73121. doi: 10.1371/journal.pone.0073121 24015290
55. Basmaciogullari S, Pizzato M (2014) The activity of Nef on HIV-1 infectivity. Front Microbiol 5: 232. doi: 10.3389/fmicb.2014.00232 24904546
56. Perrone R, Butovskaya E, Daelemans D, Palù G, Pannecouque C, et al. (2014) Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19. Journal of Antimicrobial Chemotherapy.
57. Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, et al. (2014) G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 10: 358–364. doi: 10.1038/nchembio.1479 24633353
58. Tellam JT, Zhong J, Lekieffre L, Bhat P, Martinez M, et al. (2014) mRNA Structural Constraints on EBNA1 Synthesis Impact on In Vivo Antigen Presentation and Early Priming of CD8+ T Cells. PLoS Pathog 10: e1004423. doi: 10.1371/journal.ppat.1004423 25299404
59. Tlučková K, Marušič M, Tóthová P, Bauer L, Šket P, et al. (2013) Human papillomavirus G-quadruplexes. Biochemistry 52: 7207–7216. doi: 10.1021/bi400897g 24044463
60. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, et al. (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30: 4033–4046. doi: 10.1038/emboj.2011.316 21873979
61. Shen W, Gao L, Balakrishnan M, Bambara RA (2009) A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro. J Biol Chem 284: 33883–33893. doi: 10.1074/jbc.M109.055368 19822521
62. Piekna-Przybylska D, Sharma G, Bambara RA (2013) Mechanism of HIV-1 RNA dimerization in the central region of the genome and significance for viral evolution. J Biol Chem 288: 24140–24150. doi: 10.1074/jbc.M113.477265 23839990
63. Balasubramanian S, Neidle S (2009) G-quadruplex nucleic acids as therapeutic targets. Curr Opin Chem Biol 13: 345–353. doi: 10.1016/j.cbpa.2009.04.637 19515602
64. Norseen J, Johnson FB, Lieberman PM (2009) Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J Virol 83: 10336–10346. doi: 10.1128/JVI.00747-09 19656898
65. Iverson-Cabral SL, Astete SG, Cohen CR, Totten PA (2007) mgpB and mgpC sequence diversity in Mycoplasma genitalium is generated by segmental reciprocal recombination with repetitive chromosomal sequences. Mol Microbiol 66: 55–73. 17880423
66. McCulloch R, Horn D (2009) What has DNA sequencing revealed about the VSG expression sites of African trypanosomes? Trends Parasitol 25: 359–363. doi: 10.1016/j.pt.2009.05.007 19632154
67. Brayton KA, Lau AOT, Herndon DR, Hannick L, Kappmeyer LS, et al. (2007) Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 3: 1401–1413. 17953480
68. Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5: 182–186. doi: 10.1038/nchem.1548 23422559
69. Biffi G, Di Antonio M, Tannahill D, Balasubramanian S (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 6: 75–80. doi: 10.1038/nchem.1805 24345950
70. Wong HM, Stegle O, Rodgers S, Huppert JL (2010) A toolbox for predicting g-quadruplex formation and stability. J Nucleic Acids 2010. doi: 10.4061/2010/182894 21234397
71. Kikin O, D'Antonio L, Bagga PS (2006) QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Research 34: W676–W682. 16845096
72. Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S (2008) QuadBase: genome-wide database of G4 DNA—occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Research 36: D381–D385. 17962308
73. Gowan SM, Harrison JR, Patterson L, Valenti M, Read MA, et al. (2002) A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol Pharmacol 61: 1154–1162. 11961134
74. Kim M-Y, Vankayalapati H, Shin-ya K, Wierzba K, Hurley LH (2002) Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J Am Chem Soc 124: 2098–2099. 11878947
75. Riou JF, Guittat L, Mailliet P, Laoui A, Renou E, et al. (2002) Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci USA 99: 2672–2677. 11854467
76. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12: 847–854. 16142245
77. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, et al. (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 98: 8572–8577. 11438689
78. Fang G, Cech TR (1993) The beta subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74: 875–885. 8374954
79. Fang G, Cech TR (1993) Characterization of a G-quartet formation reaction promoted by the beta-subunit of the Oxytricha telomere-binding protein. Biochemistry 32: 11646–11657. 8218232
80. Etzioni S, Yafe A, Khateb S, Weisman-Shomer P, Bengal E, et al. (2005) Homodimeric MyoD preferentially binds tetraplex structures of regulatory sequences of muscle-specific genes. J Biol Chem 280: 26805–26812. 15923190
81. Weisman-Shomer P, Fry M (1994) Stabilization of tetrahelical DNA by the quadruplex DNA binding protein QUAD. Biochem Biophys Res Commun 205: 305–311. 7999041
82. Zaug AJ, Podell ER, Cech TR (2005) Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proceedings of the National Academy of Sciences 102: 10864–10869. 16043710
83. Fukuda H, Katahira M, Tsuchiya N, Enokizono Y, Sugimura T, et al. (2002) Unfolding of quadruplex structure in the G-rich strand of the minisatellite repeat by the binding protein UP1. Proc Natl Acad Sci USA 99: 12685–12690. 12235355
84. Enokizono Y, Konishi Y, Nagata K, Ouhashi K, Uesugi S, et al. (2005) Structure of hnRNP D Complexed with Single-stranded Telomere DNA and Unfolding of the Quadruplex by Heterogeneous Nuclear Ribonucleoprotein D. J Biol Chem 280: 18862–18870. 15734733
85. Khateb S (2004) Destabilization of tetraplex structures of the fragile X repeat sequence (CGG)n is mediated by homolog-conserved domains in three members of the hnRNP family. Nucleic Acids Research 32: 4145–4154 15302914
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Control of Murine Cytomegalovirus Infection by γδ T Cells
- ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes
- Rational Development of an Attenuated Recombinant Cyprinid Herpesvirus 3 Vaccine Using Prokaryotic Mutagenesis and In Vivo Bioluminescent Imaging
- Direct Binding of Retromer to Human Papillomavirus Type 16 Minor Capsid Protein L2 Mediates Endosome Exit during Viral Infection