Cerebrospinal Fluid Cytokine Profiles Predict Risk of Early Mortality and Immune Reconstitution Inflammatory Syndrome in HIV-Associated Cryptococcal Meningitis
Cryptococcal meningitis is a severe opportunistic infection, estimated to kill several hundred thousand HIV-infected individuals each year. One of the factors contributing to this high death toll is the inadequacy of antifungal treatments. As few novel antifungal drugs are being developed, several groups have started to investigate the potential of immune modulation, with treatments designed to change the patient’s immune response to infection. However, our understanding of the immune response to cryptococcal infection in HIV-infected patients, and how these responses impact on clinical outcomes, is limited. In this study, we took advantage of the fact that we can sample cerebrospinal fluid (CSF) from the site of the infection in patients when they develop cryptococcal meningitis. We undertook a detailed analysis measuring levels of immune response parameters in the CSF of these patients, and demonstrated that there were several distinct components of the immune response. Variations in these responses were associated with both the rate at which patients cleared their infection during treatment, and with mortality. Our results provide a basis for the development of future immunomodulatory therapies, and may allow identification of patients most at risk of dying, enabling more intensive treatments to be given to those at highest risk.
Vyšlo v časopise:
Cerebrospinal Fluid Cytokine Profiles Predict Risk of Early Mortality and Immune Reconstitution Inflammatory Syndrome in HIV-Associated Cryptococcal Meningitis. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004754
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004754
Souhrn
Cryptococcal meningitis is a severe opportunistic infection, estimated to kill several hundred thousand HIV-infected individuals each year. One of the factors contributing to this high death toll is the inadequacy of antifungal treatments. As few novel antifungal drugs are being developed, several groups have started to investigate the potential of immune modulation, with treatments designed to change the patient’s immune response to infection. However, our understanding of the immune response to cryptococcal infection in HIV-infected patients, and how these responses impact on clinical outcomes, is limited. In this study, we took advantage of the fact that we can sample cerebrospinal fluid (CSF) from the site of the infection in patients when they develop cryptococcal meningitis. We undertook a detailed analysis measuring levels of immune response parameters in the CSF of these patients, and demonstrated that there were several distinct components of the immune response. Variations in these responses were associated with both the rate at which patients cleared their infection during treatment, and with mortality. Our results provide a basis for the development of future immunomodulatory therapies, and may allow identification of patients most at risk of dying, enabling more intensive treatments to be given to those at highest risk.
Zdroje
1. Jarvis JN, Meintjes G, Williams A, Brown Y, Crede T, Harrison TS. Adult meningitis in a setting of high HIV and TB prevalence: findings from 4961 suspected cases. BMC Infect Dis 2010; 10(1): 67.
2. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS (London, England) 2009; 23(4): 525–30. doi: 10.1097/QAD.0b013e328322ffac 19182676
3. Jarvis JN, Meintjes G, Rebe K, et al. Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS (London, England) 2012; 26(9): 1105–13. doi: 10.1097/QAD.0b013e3283536a93 22421244
4. Bicanic T, Wood R, Meintjes G, et al. High-dose amphotericin B with flucytosine for the treatment of cryptococcal meningitis in HIV-infected patients: a randomized trial. Clin Infect Dis 2008; 47(1): 123–30. doi: 10.1086/588792 18505387
5. Kambugu A, Meya DB, Rhein J, et al. Outcomes of cryptococcal meningitis in Uganda before and after the availability of highly active antiretroviral therapy. Clin Infect Dis 2008; 46(11): 1694–701. doi: 10.1086/587667 18433339
6. Longley N, Harrison TS, Jarvis JN. Cryptococcal immune reconstitution inflammatory syndrome. Current opinion in infectious diseases 2013; 26(1): 26–34. doi: 10.1097/QCO.0b013e32835c21d1 23242412
7. Boulware DR, Bonham SC, Meya DB, et al. Paucity of initial cerebrospinal fluid inflammation in cryptococcal meningitis is associated with subsequent immune reconstitution inflammatory syndrome. The Journal of infectious diseases 2010; 202(6): 962–70. doi: 10.1086/655785 20677939
8. Boulware DR, Meya DB, Bergemann TL, et al. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS medicine 2010; 7(12): e1000384. doi: 10.1371/journal.pmed.1000384 21253011
9. Chang CC, Lim A, Omarjee S, et al. Cryptococcosis-IRIS is associated with lower cryptococcus-specific IFN-γ responses before antiretroviral therapy but not higher T-cell responses during therapy. The Journal of infectious diseases 2013; 208(6): 898–906. doi: 10.1093/infdis/jit271 23766525
10. Uicker WC, McCracken JP, Buchanan KL. Role of CD4+ T cells in a protective immune response against Cryptococcus neoformans in the central nervous system. Med Mycol 2006; 44(1): 1–11. 16805087
11. Buchanan KL, Doyle HA. Requirement for CD4(+) T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. Infection and immunity 2000; 68(2): 456–62. 10639404
12. Wozniak KL, Ravi S, Macias S, et al. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS ONE 2009; 4(9): e6854. doi: 10.1371/journal.pone.0006854 19727388
13. Wormley FL Jr., Perfect JR, Steele C, Cox GM. Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infection and immunity 2007; 75(3): 1453–62. 17210668
14. Herring AC, Lee J, McDonald RA, Toews GB, Huffnagle GB. Induction of interleukin-12 and gamma interferon requires tumor necrosis factor alpha for protective T1-cell-mediated immunity to pulmonary Cryptococcus neoformans infection. Infection and immunity 2002; 70(6): 2959–64. 12010985
15. Wozniak KL, Hardison S, Olszewski M, Wormley FL. Induction of protective immunity against cryptococcosis. Mycopathologia 2012; 173(5–6): 387–94. doi: 10.1007/s11046-012-9528-9 22354778
16. Arora S, Olszewski MA, Tsang TM, McDonald RA, Toews GB, Huffnagle GB. Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans. Infection and immunity 2011; 79(5): 1915–26. doi: 10.1128/IAI.01270-10 21383052
17. Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL. Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. J Immunol 2012; 189(8): 4060–8. doi: 10.4049/jimmunol.1103455 22984078
18. Zhang Y, Wang F, Tompkins KC, et al. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. The American journal of pathology 2009; 175(6): 2489–500. doi: 10.2353/ajpath.2009.090530 19893050
19. Kleinschek MA, Muller U, Brodie SJ, et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol 2006; 176(2): 1098–106. 16393998
20. Szymczak WA, Sellers RS, Pirofski LA. IL-23 dampens the allergic response to Cryptococcus neoformans through IL-17-independent and -dependent mechanisms. The American journal of pathology 2012; 180(4): 1547–59. doi: 10.1016/j.ajpath.2011.12.038 22342846
21. Wozniak KL, Hardison SE, Kolls JK, Wormley FL. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS ONE 2011; 6(2): e17204. doi: 10.1371/journal.pone.0017204 21359196
22. Qiu Y, Davis MJ, Dayrit JK, et al. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice. PLoS ONE 2012; 7(10): e47853. doi: 10.1371/journal.pone.0047853 23110112
23. Müller U, Stenzel W, Köhler G, et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J Immunol 2007; 179(8): 5367–77. 17911623
24. Almeida GM, Andrade RM, Bento CA. The capsular polysaccharides of Cryptococcus neoformans activate normal CD4(+) T cells in a dominant Th2 pattern. J Immunol 2001; 167(10): 5845–51. 11698459
25. Müller U, Piehler D, Stenzel W, et al. Lack of IL-4 receptor expression on T helper cells reduces T helper 2 cell polyfunctionality and confers resistance in allergic bronchopulmonary mycosis. Mucosal Immunol 2012; 5(3): 299–310. doi: 10.1038/mi.2012.9 22333910
26. Müller U, Stenzel W, Piehler D, et al. Abrogation of IL-4 receptor-α-dependent alternatively activated macrophages is sufficient to confer resistance against pulmonary cryptococcosis despite an ongoing T(h)2 response. Int Immunol 2013; 25(8): 459–70. doi: 10.1093/intimm/dxt003 23532373
27. Jarvis JN, Harrison TS. HIV-associated cryptococcal meningitis. AIDS (London, England) 2007; 21(16): 2119–29. 18090038
28. Jarvis JN, Dromer F, Harrison TS, Lortholary O. Managing cryptococcosis in the immunocompromised host. Current opinion in infectious diseases 2008; 21(6): 596–603. doi: 10.1097/QCO.0b013e3283177f6c 18978527
29. Jarvis JN, Casazza JP, Stone HH, et al. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. The Journal of infectious diseases 2013; 207(12): 1817–28. doi: 10.1093/infdis/jit099 23493728
30. Siddiqui AA, Brouwer AE, Wuthiekanun V, et al. IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J Immunol 2005; 174(3): 1746–50. 15661940
31. Brouwer AE, Rajanuwong A, Chierakul W, et al. Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet 2004; 363(9423): 1764–7. 15172774
32. Bicanic T, Meintjes G, Rebe K, et al. Immune Reconstitution Inflammatory Syndrome in HIV-Associated Cryptococcal Meningitis: A Prospective Study. Journal of acquired immune deficiency syndromes (1999) 2009.
33. Kropf P, Baud D, Marshall SE, et al. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 2007; 37(4): 935–45. 17330821
34. Genser B, Cooper PJ, Yazdanbakhsh M, Barreto ML, Rodrigues LC. A guide to modern statistical analysis of immunological data. BMC Immunol 2007; 8: 27. 17963513
35. Ringnér M. What is principal component analysis? Nat Biotechnol 2008; 26(3): 303–4. doi: 10.1038/nbt0308-303 18327243
36. Jarvis JN, Bicanic T, Loyse A, et al. Determinants of Mortality in a Combined Cohort of 501 Patients with HIV-associated Cryptococcal Meningitis: Implications for Improving Outcomes. Clin Infect Dis 2013.
37. Uicker WC, Doyle HA, McCracken JP, Langlois M, Buchanan KL. Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans. Med Mycol 2005; 43(1): 27–38. 15712606
38. Zhou Q, Gault RA, Kozel TR, Murphy WJ. Protection from direct cerebral cryptococcus infection by interferon-gamma-dependent activation of microglial cells. J Immunol 2007; 178(9): 5753–61. 17442959
39. Aguirre K, Miller S. MHC class II-positive perivascular microglial cells mediate resistance to Cryptococcus neoformans brain infection. Glia 2002; 39(2): 184–8. 12112369
40. Voelz K, Lammas DA, May RC. Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infection and immunity 2009; 77(8): 3450–7. doi: 10.1128/IAI.00297-09 19487474
41. Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol 2008; 38(10): 2636–49. doi: 10.1002/eji.200838535 18958872
42. Peck A, Mellins ED. Precarious balance: Th17 cells in host defense. Infection and immunity 2010; 78(1): 32–8. doi: 10.1128/IAI.00929-09 19901061
43. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485–517. doi: 10.1146/annurev.immunol.021908.132710 19132915
44. Wozniak KL, Kolls JK, Wormley FL. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by γδ T cells. BMC Immunol 2012; 13: 65. doi: 10.1186/1471-2172-13-65 23216912
45. Stenzel W, Müller U, Köhler G, et al. IL-4/IL-13-dependent alternative activation of macrophages but not microglial cells is associated with uncontrolled cerebral cryptococcosis. The American journal of pathology 2009; 174(2): 486–96. doi: 10.2353/ajpath.2009.080598 19147811
46. Alexander J, Brombacher F. T helper1/t helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant? Front Immunol 2012; 3: 80. doi: 10.3389/fimmu.2012.00080 22566961
47. Cloke TE, Garvey L, Choi BS, et al. Increased level of arginase activity correlates with disease severity in HIV-seropositive patients. The Journal of infectious diseases 2010; 202(3): 374–85. doi: 10.1086/653736 20575659
48. Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 2013; 4(3): e00264–13. doi: 10.1128/mBio.00264-13 23781069
49. Chang CC, Omarjee S, Lim A, et al. Chemokine Levels and Chemokine Receptor Expression in the Blood and the Cerebrospinal Fluid of HIV-Infected Patients With Cryptococcal Meningitis and Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome. The Journal of infectious diseases 2013; 208(10): 1604–12. doi: 10.1093/infdis/jit388 23908492
50. Chang CC, Dorasamy AA, Gosnell BI, et al. Clinical and mycological predictors of cryptococcosis-associated Immune reconstitution inflammatory syndrome (C-IRIS). AIDS (London, England) 2013.
51. Lortholary O, Dromer F, Mathoulin-Pelissier S, et al. Immune mediators in cerebrospinal fluid during cryptococcosis are influenced by meningeal involvement and human immunodeficiency virus serostatus. J Infect Dis 2001; 183(2): 294–302. 11110651
52. Christo PP, Vilela Mde C, Bretas TL, et al. Cerebrospinal fluid levels of chemokines in HIV infected patients with and without opportunistic infection of the central nervous system. J Neurol Sci 2009; 287(1–2): 79–83. doi: 10.1016/S0022-510X(09)71299-7 20106347
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 4
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Infection
- Toxin-Induced Necroptosis Is a Major Mechanism of Lung Damage
- Transgenic Fatal Familial Insomnia Mice Indicate Prion Infectivity-Independent Mechanisms of Pathogenesis and Phenotypic Expression of Disease
- A Temporal Gate for Viral Enhancers to Co-opt Toll-Like-Receptor Transcriptional Activation Pathways upon Acute Infection