#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Analysis Using an Isogenic Mating Pair of Identifies Azole Resistance Genes and Lack of Locus’s Role in Virulence


Invasive aspergillosis (IA) caused by Aspergillus fumigatus is increasing due to medical interventions that suppress the ability of patients’ immune systems to control infections. These invasive lung infections are difficult to diagnose and consequently treatment is frequently not started promptly. Some controversy surrounds the role of mating type in virulence of A. fumigatus and the emergence of azole resistant strains has posed difficult challenges for clinical management of IA. We generated nearly identical A. fumigatus strains with opposite mating types that allowed us to test whether different mating types have different virulence profiles. We found no difference in virulence in three different animal models, which suggests that mating type does not influence virulence. We also took advantage of the essentially identical genomes of both strains to apply classical genetic approaches combined with genomics technologies to identify A. fumigatus genes that contribute to azole resistance. We performed genetic crosses of azole sensitive with azole resistant strains and analyzed the resistance status and genome composition of the offspring. Using this approach we cataloged several genes that were not previously associated with azole resistance. This information will be valuable for finding ways to manage azole resistance in IA patients.


Vyšlo v časopise: Genetic Analysis Using an Isogenic Mating Pair of Identifies Azole Resistance Genes and Lack of Locus’s Role in Virulence. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004834
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004834

Souhrn

Invasive aspergillosis (IA) caused by Aspergillus fumigatus is increasing due to medical interventions that suppress the ability of patients’ immune systems to control infections. These invasive lung infections are difficult to diagnose and consequently treatment is frequently not started promptly. Some controversy surrounds the role of mating type in virulence of A. fumigatus and the emergence of azole resistant strains has posed difficult challenges for clinical management of IA. We generated nearly identical A. fumigatus strains with opposite mating types that allowed us to test whether different mating types have different virulence profiles. We found no difference in virulence in three different animal models, which suggests that mating type does not influence virulence. We also took advantage of the essentially identical genomes of both strains to apply classical genetic approaches combined with genomics technologies to identify A. fumigatus genes that contribute to azole resistance. We performed genetic crosses of azole sensitive with azole resistant strains and analyzed the resistance status and genome composition of the offspring. Using this approach we cataloged several genes that were not previously associated with azole resistance. This information will be valuable for finding ways to manage azole resistance in IA patients.


Zdroje

1. Barton RC. Laboratory Diagnosis of Invasive Aspergillosis: from Diagnosis to Prediction of Outcome. Scientifica. 2013; 2013.

2. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005; 438: 1151–1156. 16372009

3. Abad A, Fernandez-Molina JV, Bikandi J, Ramirez A, Margareto J, Sendino J, et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol. 2010; 27: 155–182. doi: 10.1016/j.riam.2010.10.003 20974273

4. O'Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457: 471–474. doi: 10.1038/nature07528 19043401

5. Sugui JA, Losada L, Wang W, Varga J, Ngamskulrungroj P, Abu-Asab M, et al. Identification and characterization of an Aspergillus fumigatus "supermater" pair. MBio. 2011; 2: e00234–11. doi: 10.1128/mBio.00234-11 22108383

6. Nielsen K, Marra RE, Hagen F, Boekhout T, Mitchell TG, Cox GM, et al. Interaction between genetic background and the mating-type locus in Cryptococcus neoformans virulence potential. Genetics. 2005; 171: 975–983. 15965241

7. Zhai B, Zhu P, Foyle D, Upadhyay S, Idnurm A, Lin X. Congenic strains of the filamentous form of Cryptococcus neoformans for studies of fungal morphogenesis and virulence. Infect Immun. 2013; 81: 2626–2637. doi: 10.1128/IAI.00259-13 23670559

8. Zhu P, Zhai B, Lin X, Idnurm A. Congenic strains for genetic analysis of virulence traits in Cryptococcus gattii. Infect Immun. 2013; 81: 2616–2625. doi: 10.1128/IAI.00018-13 23670558

9. Kwon-Chung KJ, Edman JC, Wickes BL. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992; 60: 602–605. 1730495

10. Alvarez-Perez S, Blanco JL, Alba P, Garcia ME. Mating type and invasiveness are significantly associated in Aspergillus fumigatus. Med Mycol. 2010; 48: 273–277. doi: 10.1080/13693780903095414 19634068

11. Cheema MS, Christians JK. Virulence in an insect model differs between mating types in Aspergillus fumigatus. Med Mycol. 2011;49: 202–207. doi: 10.3109/13693786.2010.512301 20818921

12. Bueid A, Howard SJ, Moore CB, Richardson MD, Harrison E, Bowyer P, et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010; 65: 2116–2118. doi: 10.1093/jac/dkq279 20729241

13. Odds FC, Brown AJP, Gow NAR. Antifungal agents: mechanisms of action. Trends in Microbiol. 2003; 11: 272–279. 12823944

14. Eschertzhuber S, Velik-Salchner C, Hoermann C, Hoefer D, Lass-Florl C. Caspofungin-resistant Aspergillus flavus after heart transplantation and mechanical circulatory support: a case report. Transpl Infec Dis. 2008; 10: 190–192. 17605738

15. Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010; 37: 311–320. doi: 10.1016/j.molcel.2010.01.003 20159551

16. Singh-Babak SD, Babak T, Diezmann S, Hill JA, Xie JL, Chen YL, et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 2012; 8: e1002718. doi: 10.1371/journal.ppat.1002718 22615574

17. Flannery EL, Fidock DA, Winzeler EA. Using Genetic Methods To Define the Targets of Compounds with Antimalarial Activity. J Med Chem. 2013; 56: 7761–7771. doi: 10.1021/jm400325j 23927658

18. Fortwendel JR, Fuller KK, Stephens TJ, Bacon WC, Askew DS, Rhodes JC. Aspergillus fumigatus RasA regulates asexual development and cell wall integrity. Eukaryot Cell. 2008; 7: 1530–1539. doi: 10.1128/EC.00080-08 18606827

19. Camps SM, Dutilh BE, Arendrup MC, Rijs AJ, Snelders E, Huynen MA, et al. Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One. 2012 7: e50034. doi: 10.1371/journal.pone.0050034 23226235

20. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet. 2008; 4: e1000046. doi: 10.1371/journal.pgen.1000046 18404212

21. Rokas A, Gibbons JG, Zhou X, Beauvais A, Latge JP. The diverse applications of RNA-seq for functional genomic studies in Aspergillus fumigatus. Ann N Y Acad Sci. 2012; 1273: 25–34. doi: 10.1111/j.1749-6632.2012.06755.x 23230834

22. Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 1995; 9: 202–209. 7719350

23. Sugui JA, Peterson SW, Clark LP, Nardone G, Folio L, Riedlinger G, et al. Aspergillus tanneri sp. nov., a new pathogen that causes invasive disease refractory to antifungal therapy. J Clin Microbiol. 2012; 50: 3309–3317. doi: 10.1128/JCM.01509-12 22855513

24. Reeves EP, Messina CG, Doyle S, Kavanagh K. Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia. 2004;158: 73–79. 15487324

25. Renwick J, Daly P, Reeves EP, Kavanagh K. Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia. 2006; 161: 377–384. 16761185

26. Slater JL, Gregson L, Denning DW, Warn PA. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med Mycol. 2011; 49 Suppl 1: S107–113. doi: 10.3109/13693786.2010.523852 20950221

27. Vazquez JA, Arganoza MT, Boikov D, Yoon S, Sobel JD, Akins RA. Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles. J Clin Microbiol. 1998; 36: 2690–2695. 9705415

28. Sabatelli F, Patel R, Mann PA, Mendrick CA, Norris CC, Hare R, et al. In Vitro Activities of Posaconazole, Fluconazole, Itraconazole, Voriconazole, and Amphotericin B against a Large Collection of Clinically Important Molds and Yeasts. Antimicrob Agents Chemother. 2006; 50: 2009–2015. 16723559

29. Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL. Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol. 2001; 39: 2431–2438. 11427550

30. Alcazar-Fuoli L, Mellado E. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol. 2012; 3:439. doi: 10.3389/fmicb.2012.00439 23335918

31. Freitas JS, Silva EM, Leal J, Gras DE, Martinez-Rossi NM, Dos Santos LD, et al. Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress and Chaperones. 2011; 16: 565–572. doi: 10.1007/s12192-011-0267-5 21553327

32. Friesen JA, Rodwell VW. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol. 2004; 5: 248. 15535874

33. Craig EA, Kramer J, Kosic-Smithers J. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc Natl Acad Sci U S A. 1987; 84: 4156–4160. 3035571

34. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005; 438: 1105–1115. 16372000

35. Szewczyk E, Krappmann S. Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryot Cell. 2010; 9: 774–783. doi: 10.1128/EC.00375-09 20348388

36. Rodríguez-Navarro S, Carlos Igual J, Pérez-Ortín JE. SRC1: an intron-containing yeast gene involved in sister chromatid segregation. Yeast. 2002; 19: 43–54. 11754482

37. Grund SE, Fischer T, Cabal GG, Antunez O, Perez-Ortin JE, Hurt E. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J Cell Biol. 2008; 182: 897–910. doi: 10.1083/jcb.200803098 18762579

38. Liebmann B, Gattung S, Jahn B, Brakhage AA. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol Genet Genomics. 2003; 269: 420–435. 12734751

39. Lee SC, Ni M, Li W, Shertz C, Heitman J. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev. 2010;74: 298–340. doi: 10.1128/MMBR.00005-10 20508251

40. Geiser DM, Frisvad JC, Taylor JW. Evolutionary relationships in Aspergillus Section Fumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia. 1998; 90: 831–845.

41. Alvarez-Perez S, Garcia ME, Bouza E, Pelaez T, Blanco JL. Characterization of multiple isolates of Aspergillus fumigatus from patients: genotype, mating type and invasiveness. Med Mycol. 2009; 47: 601–608. doi: 10.1080/13693780802380537 18798050

42. Kwon-Chung KJ, Weeks RJ, Larsh HW. Studies on Emmonsiella capsulata (Histoplasma capsulatum). II. Distribution of the two mating types in 13 endemic states of the United States. Am J Epidemiol. 1974; 99: 44–49. 4811175

43. Kwon-Chung KJ, Bartlett MS, Wheat LJ. Distribution of the two mating types among Histoplasma capsulatum isolates obtained from an urban histoplasmosis outbreak. Sabouraudia. 1984; 22: 155–157. 6729659

44. Kwon-Chung KJ, Bennett JE. Distribution of alpha and alpha mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol. 1978; 108: 337–340. 364979

45. Shafaati M, Mast N, Beck O, Nayef R, Heo GY, Bjorkhem-Bergman L, et al. The antifungal drug voriconazole is an efficient inhibitor of brain cholesterol 24S-hydroxylase in vitro and in vivo. J Lipid Res. 2010; 51: 318–323. doi: 10.1194/jlr.M900174-JLR200 19474457

46. Lamoth F, Juvvadi PR, Soderblom EJ, Moseley MA, Asfaw YG, Steinbach WJ. Identification of a Key Lysine Residue in Heat Shock Protein 90 Required for Azole and Echinocandin Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2014; 58: 1889–1896. doi: 10.1128/AAC.02286-13 24395240

47. Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ, Cornish EJ, et al. SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus. PLoS Genet. 2011; 7: e1002374. doi: 10.1371/journal.pgen.1002374 22144905

48. Gautam P, Shankar J, Madan T, Sirdeshmukh R, Sundaram CS, Gade WN, et al. Proteomic and Transcriptomic Analysis of Aspergillus fumigatus on Exposure to Amphotericin B. Antimicrob Agents Chemother. 2008; 52: 4220–4227. doi: 10.1128/AAC.01431-07 18838595

49. Albrecht D, Guthke R, Brakhage A, Kniemeyer O. Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics. 2010; 11: 32. doi: 10.1186/1471-2164-11-32 20074381

50. Lupetti A, Danesi R, Campa M, Tacca MD, Kelly S. Molecular basis of resistance to azole antifungals. Trends Mol Med. 2002; 8: 76–81. 11815273

51. Sugui JA, Chang YC, Kwon-Chung KJ. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl Environ Microbiol. 2005; 71: 1798–1802. 15812003

52. Rao GV, Tinkle S, Weissman DN, Antonini JM, Kashon ML, Salmen R, et al. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health A. 2003; 66: 1441–1452. 12857634

53. Jackson JC, Higgins LA, Lin X. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS One. 2009; 4: e4224. doi: 10.1371/journal.pone.0004224 19156203

54. CLSI Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard—Second Edition. CLSI document M38-A2. 2008; Clinical and Laboratory Standards Institute. Wayne, PA.

55. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#