#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Neutrophil Recruitment to Lymph Nodes Limits Local Humoral Response to


Highly antibiotic resistant Staphylococcus aureus (S. aureus) are an important human pathogen and major cause of hospital acquired infections. An early host defense mechanism against bacterial infection is neutrophil recruitment, which helps eliminate the bacteria at the site of invasion. However, unless quickly neutralized, pathogens such as S. aureus can gain access to nearby lymph nodes via draining lymphatics. Lymph nodes protect the host by mobilizing additional resources that limit further pathogen dissemination. These include recruitment of neutrophils to the lymph node to directly target pathogens and the initiation of adaptive immune mechanisms, such as the humoral immune response, which transforms B lymphocytes capable of making pathogen specific antibodies into antibody producing plasma cells. Using a mouse model that allows direct visualization of lymphocytes, neutrophils, and fluorescently-labeled S. aureus in lymph nodes, we document the rapid appearance of bacteria in the lymph node following local S. aureus infection. We characterize the dynamic influx of neutrophils that occurs as a consequence and reveal direct B cell-neutrophil interactions within the lymph node parenchyma. We find that while lymph node neutrophils rapidly engage bacteria, they limit the subsequent humoral immune response likely by producing Transforming Growth Factor-β1, a factor known to limit B cell responses. These finding have important implication for our understanding of B cell responses against potent pathogens such as S. aureus and for the design of effective vaccines.


Vyšlo v časopise: Neutrophil Recruitment to Lymph Nodes Limits Local Humoral Response to. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004827
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004827

Souhrn

Highly antibiotic resistant Staphylococcus aureus (S. aureus) are an important human pathogen and major cause of hospital acquired infections. An early host defense mechanism against bacterial infection is neutrophil recruitment, which helps eliminate the bacteria at the site of invasion. However, unless quickly neutralized, pathogens such as S. aureus can gain access to nearby lymph nodes via draining lymphatics. Lymph nodes protect the host by mobilizing additional resources that limit further pathogen dissemination. These include recruitment of neutrophils to the lymph node to directly target pathogens and the initiation of adaptive immune mechanisms, such as the humoral immune response, which transforms B lymphocytes capable of making pathogen specific antibodies into antibody producing plasma cells. Using a mouse model that allows direct visualization of lymphocytes, neutrophils, and fluorescently-labeled S. aureus in lymph nodes, we document the rapid appearance of bacteria in the lymph node following local S. aureus infection. We characterize the dynamic influx of neutrophils that occurs as a consequence and reveal direct B cell-neutrophil interactions within the lymph node parenchyma. We find that while lymph node neutrophils rapidly engage bacteria, they limit the subsequent humoral immune response likely by producing Transforming Growth Factor-β1, a factor known to limit B cell responses. These finding have important implication for our understanding of B cell responses against potent pathogens such as S. aureus and for the design of effective vaccines.


Zdroje

1. Gonzalez S.F., et al., Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol, 2011. 29: p. 215–33. doi: 10.1146/annurev-immunol-031210-101255 21219172

2. Buettner M. and Bode U., Lymph node dissection—understanding the immunological function of lymph nodes. Clin Exp Immunol, 2012. 169(3): p. 205–12. doi: 10.1111/j.1365-2249.2012.04602.x 22861359

3. Kastenmüller W., et al., A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell, 2012. 150(6): p. 1235–48. doi: 10.1016/j.cell.2012.07.021 22980983

4. Chtanova T., et al., Dynamics of neutrophil migration in lymph nodes during infection. Immunity, 2008. 29(3): p. 487–496. doi: 10.1016/j.immuni.2008.07.012 18718768

5. Maletto B.A., et al., Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood, 2006. 108(9): p. 3094–102. 16835380

6. Huard B., et al., APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest, 2008. 118(8): p. 2887–2895. doi: 10.1172/JCI33760 18618015

7. Yang C.W. and Unanue E.R., Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process. J Exp Med. 210(2): p. 375–87. doi: 10.1084/jem.20122183 23337807

8. Rankin S., The bone marrow: a site of neutrophil clearance. J Leukoc Biol, 2010. 88(2): p. 241–51. doi: 10.1189/jlb.0210112 20483920

9. Kesteman N., et al., Injection of lipopolysaccharide induces the migration of splenic neutrophils to the T cell area of the white pulp: role of CD14 and CXC chemokines. J Leukoc Biol, 2008. 83(3): p. 640–7. 18156186

10. Sadik C., Kim N., and Luster A., Neutrophils cascading their way to inflammation. Trends Immunol, 2011. 32(10): p. 452–60. doi: 10.1016/j.it.2011.06.008 21839682

11. Segal A., How Neutrophils Kill Microbes. Annu Rev Immunol, 2005. 23: p. 197–233. 15771570

12. Kolaczkowska E. and Kubes P., Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 2013. 13(3): p. 159–75. doi: 10.1038/nri3399 23435331

13. Pesce J.T., et al., Neutrophils Clear Bacteria Associated with Parasitic Nematodes Augmenting the Development of an Effective Th2-Type Response. J Immunol., 2008. 1(180): p. 464–74. 18097048

14. Abi-Abdallah D., et al., Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol, 2011. 23(5): p. 317–26. doi: 10.1093/intimm/dxr007 21422151

15. Geng S., et al., Emergence, origin, and function of neutrophil–dendritic cell hybrids in experimentally induced inflammatory lesions in mice. Blood, 2013. 121(10): p. 1690–700. doi: 10.1182/blood-2012-07-445197 23305733

16. Matsushima H., et al., Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood, 2013. 121(10): p. 1677–89. doi: 10.1182/blood-2012-07-445189 23305731

17. Puga I., et al., B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol, 2011. 13(2): p. 170–80. doi: 10.1038/ni.2194 22197976

18. Sangaletti S., et al., Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov, 2014 4(1): p. 110–29. doi: 10.1158/2159-8290.CD-13-0276 24189145

19. Yang C.W., et al., Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J Immunol., 2010. 185(5): p. 2927–34. doi: 10.4049/jimmunol.1001289 20679530

20. Park C., et al., Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood, 2011. 119(4): p. 978–89. doi: 10.1182/blood-2011-06-364273 22039261

21. Allen C.D., et al., Imaging of germinal center selection events during affinity maturation. Science, 2007. 315(5811): p. 528–31. 17185562

22. Fairfax K.A., et al., Plasma cell development: from B-cell subsets to long-term survival niches. Semin Immunol, 2008. 20(1): p. 49–58. doi: 10.1016/j.smim.2007.12.002 18222702

23. Chu V.T. and Berek C., The establishment of the plasma cell survival niche in the bone marrow. Immunol Rev, 2013. 251(1): p. 177–88. doi: 10.1111/imr.12011 23278749

24. Mohr E., et al., Dendritic cells and monocyte/macrophages that create the IL-6/APRIL-rich lymph node microenvironments where plasmablasts mature. J Immunol, 2009. 182(4): p. 2113–23. doi: 10.4049/jimmunol.0802771 19201864

25. Lim H.W., Hillsamer P., and Kim C.H., Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell–driven B cell responses. J Clin Invest, 2004. 114(11): p. 1640–1649. 15578096

26. Gros M.J., Naquet P., and Guinamard R.R., Cell intrinsic TGF-beta 1 regulation of B cells. J Immunol, 2008. 180(12): p. 8153–8. 18523280

27. Rigby K. and DeLeo F., Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol, 2012. 34(2): p. 237–59. doi: 10.1007/s00281-011-0295-3 22080185

28. Krishna S. and Miller L., Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol, 2012. 34(2): p. 261–80. doi: 10.1007/s00281-011-0292-6 22057887

29. Lin L., et al., Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog, 2009. 5(12).

30. Spellberg B. and Daum R., Development of a vaccine against Staphylococcus aureus. Semin Immunopathol, 2012. 34(2): p. 335–48. doi: 10.1007/s00281-011-0293-5 22080194

31. Kim H.K., et al., Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol, 2012. 15(1): p. 92–9. doi: 10.1016/j.mib.2011.10.012 22088393

32. Silverman G.J. and Goodyear C.S., Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol, 2006. 6: p. 465–475. 16724100

33. Kim H.K., et al., Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. FASEB J, 2011. 25(10): p. 3605–12. doi: 10.1096/fj.11-187963 21753082

34. DeLeo F. and Otto M., Host Defense and Pathogenesis in Staphylococcus aureus Infections. Infect Dis Clin North Am, 2009. 23(1): p. 17–34. doi: 10.1016/j.idc.2008.10.003 19135914

35. Otto M., Looking toward basic science for potential drug discovery targets against community-associated MRSA. Med Res Rev, 2010. 30(1): p. 1–22. doi: 10.1002/med.20160 19399829

36. Beauvillain C., et al., CCR7 is involved in the migration of neutrophils to lymph nodes. Blood, 2011. 117(4): p. 1196–204. doi: 10.1182/blood-2009-11-254490 21051556

37. Faust N., et al., Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood, 2000. 96: p. 719–726. 10887140

38. Holmes G.R., et al., Repelled from the wound, or randomly dispersed? Reverse migration behaviour of neutrophils characterized by dynamic modelling. J R Soc Interface, 2012. 9(77): p. 3229–39. doi: 10.1098/rsif.2012.0542 22951343

39. Riedl J., et al., Lifeact mice for studying F-actin dynamics. Nat Methods, 2010. 7: p. 168–169. doi: 10.1038/nmeth0310-168 20195247

40. Kehrl J.H., et al., Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol, 1986. 137(12): p. 3855–60. 2878044

41. Fooksman D.R., et al., Development and migration of plasma cells in the mouse lymph node. Immunity, 2010. 33(1): p. 118–27. doi: 10.1016/j.immuni.2010.06.015 20619695

42. Celso C., Lin C., and Scadden D., In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat Prot, 2011. 6: p. 1–14.

43. Abtin A., et al., Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol, 2014. 15(1): p. 43–56.

44. Pereira J.P., Kelly L.M., and Cyster J.G., Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. Int Immunol, 2010. 22(6): p. 413–9. doi: 10.1093/intimm/dxq047 20508253

45. Remijsen Q., et al., Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ, 2011. 18(4): p. 581–8. doi: 10.1038/cdd.2011.1 21293492

46. Yang C.W. and Unanue E.R., Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process. J Exp Med, 2013. 210(2): p. 375–87. doi: 10.1084/jem.20122183 23337807

47. Fooksman D.R., Nussenzweig M.C., and Dustin M.L., Myeloid cells limit production of antibody-secreting cells after immunization in the lymph node. J Immunol, 2014. 192(3): p. 1004–12. doi: 10.4049/jimmunol.1300977 24376270

48. Forsgren A. and Sjoquist J., "Protein A" from S. aureus. I. Pseudo-immune reaction with human gamma-globulin. J Immunol 1967. 97(6): p. 822–7.

49. Ribeiro-Gomes F.L., et al., Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response. PLoS Pathog, 2012. 8(2): p. e1002536. doi: 10.1371/journal.ppat.1002536 22359507

50. Gray E.E. and Cyster J.G., Lymph node macrophages. J Innate Immun, 2012. 4(5–6): p. 424–36. doi: 10.1159/000338648 22722749

51. Batista F.D. and Dustin M.L., Cell:cell interactions in the immune system. Immunol Rev, 2013. 251(1): p. 7–12. doi: 10.1111/imr.12025 23278736

52. Eash K.J., et al., CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest, 2010. 120(7): p. 2423–2431. doi: 10.1172/JCI41649 20516641

53. Martin C., et al., Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity, 2003. 19(4): p. 583–93. 14563322

54. Sastalla I., et al., Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria. Appl Environ Microbiol, 2009. 75(7): p. 2099–110. doi: 10.1128/AEM.02066-08 19181829

55. Luong T.T. and Lee C.Y., Improved single-copy integration vectors for Staphylococcus aureus. J Microbiol Methods, 2007. 70(1): p. 186–90. 17512993

56. Cheung G., et al., Production of an Attenuated Phenol-Soluble Modulin Variant Unique to the MRSA Clonal Complex 30 Increases Severity of Bloodstream Infection. PLoS Pathog, 2014. 10(8): p. e1004298. doi: 10.1371/journal.ppat.1004298 25144687

57. Sinha R.K., et al., B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity, 2009. 30(3): p. 434–46. doi: 10.1016/j.immuni.2008.12.018 19230723

58. Matheu M.P., Cahalan M.D., and Parker I., In Vivo Lymph Node Imaging. CSHL Press, 2011(Cold Spring Harbor Protocols): p. 5568.

59. Kim M.H., et al., Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. Blood, 2011. 117(12): p. 3343–52. doi: 10.1182/blood-2010-07-296970 21278352

60. Dryla A., et al., Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin Diagn Lab Immunol, 2005. 12(3): p. 387–98. 15753252

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#