#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Conserved Spirosomes Suggest a Single Type of Transformation Pilus in Competence


Streptococcus pneumoniae often escapes prevention and treatment through rapid horizontal gene transfer via natural transformation. Uptake of exogenous DNA requires expression of a transformation pilus but two markedly different models for pilus assembly and function have been proposed. We previously reported a long, Type 4 pilus-like appendage on the surface of competent pneumococci that binds extracellular DNA as initial receptor, while a separate study proposed that secreted short, ‘plaited’ transformation pili act simply as peptidoglycan drills to open DNA gateways. Here we show that the ‘plaited’ structures are not competence-specific or related to transformation. We further demonstrate that these are macromolecular assemblies of the metabolic enzyme acetaldehyde-alcohol dehydrogenase—or spirosomes—broadly conserved across the bacterial kingdom.


Vyšlo v časopise: Conserved Spirosomes Suggest a Single Type of Transformation Pilus in Competence. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004835
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004835

Souhrn

Streptococcus pneumoniae often escapes prevention and treatment through rapid horizontal gene transfer via natural transformation. Uptake of exogenous DNA requires expression of a transformation pilus but two markedly different models for pilus assembly and function have been proposed. We previously reported a long, Type 4 pilus-like appendage on the surface of competent pneumococci that binds extracellular DNA as initial receptor, while a separate study proposed that secreted short, ‘plaited’ transformation pili act simply as peptidoglycan drills to open DNA gateways. Here we show that the ‘plaited’ structures are not competence-specific or related to transformation. We further demonstrate that these are macromolecular assemblies of the metabolic enzyme acetaldehyde-alcohol dehydrogenase—or spirosomes—broadly conserved across the bacterial kingdom.


Zdroje

1. Bogaert D, De Groot R, Hermans PW (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. The Lancet Infectious diseases 4: 144–154. 14998500

2. Campbell GD Jr., Silberman R (1998) Drug-resistant Streptococcus pneumoniae. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 26: 1188–1195.

3. Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, et al. (2013) Global burden of childhood pneumonia and diarrhoea. Lancet 381: 1405–1416. doi: 10.1016/S0140-6736(13)60222-6 23582727

4. Hiller NL, Ahmed A, Powell E, Martin DP, Eutsey R, et al. (2010) Generation of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection. PLoS pathogens 6: e1001108. doi: 10.1371/journal.ppat.1001108 20862314

5. Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nature reviews Microbiology 12: 181–196. doi: 10.1038/nrmicro3199 24509783

6. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nature reviews Microbiology 2: 241–249. 15083159

7. Johnston C, Campo N, Berge MJ, Polard P, Claverys JP (2014) Streptococcus pneumoniae, le transformiste. Trends in microbiology 22: 113–119. doi: 10.1016/j.tim.2014.01.002 24508048

8. Balaban M, Battig P, Muschiol S, Tirier SM, Wartha F, et al. (2014) Secretion of a pneumococcal type II secretion system pilus correlates with DNA uptake during transformation. Proceedings of the National Academy of Sciences of the United States of America 111: E758–765. doi: 10.1073/pnas.1313860111 24550320

9. Chen I, Provvedi R, Dubnau D (2006) A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. The Journal of biological chemistry 281: 21720–21727. 16751195

10. Laurenceau R, Pehau-Arnaudet G, Baconnais S, Gault J, Malosse C, et al. (2013) A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS pathogens 9: e1003473. doi: 10.1371/journal.ppat.1003473 23825953

11. Dubnau D (1999) DNA uptake in bacteria. Annual review of microbiology 53: 217–244. 10547691

12. Nunn D, Bergman S, Lory S (1990) Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. Journal of bacteriology 172: 2911–2919. 1971619

13. Mann JM, Carabetta VJ, Cristea IM, Dubnau D (2013) Complex formation and processing of the minor transformation pilins of Bacillus subtilis. Molecular microbiology 90: 1201–1215. doi: 10.1111/mmi.12425 24164455

14. Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nature reviews Microbiology 2: 363–378. 15100690

15. Campos M, Nilges M, Cisneros DA, Francetic O (2010) Detailed structural and assembly model of the type II secretion pilus from sparse data. Proceedings of the National Academy of Sciences of the United States of America 107: 13081–13086. doi: 10.1073/pnas.1001703107 20616068

16. Nivaskumar M, Bouvier G, Campos M, Nadeau N, Yu X, et al. (2014) Distinct docking and stabilization steps of the Pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22: 685–696. doi: 10.1016/j.str.2014.03.001 24685147

17. Havarstein LS, Martin B, Johnsborg O, Granadel C, Claverys JP (2006) New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Molecular microbiology 59: 1297–1307. 16430701

18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of molecular biology 215: 403–410. 2231712

19. Extance J, Crennell SJ, Eley K, Cripps R, Hough DW, et al. (2013) Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius. Acta crystallographica Section D, Biological crystallography 69: 2104–2115. doi: 10.1107/S0907444913020349 24100328

20. Kawata T, Masuda K, Nomura S (1982) Superprecipitation-like phenomenon and destruction induced by adenosine 5'-triphosphate in spirosomes isolated from Lactobacillus brevis. Microbiology and immunology 26: 979–983. 6298583

21. Kessler D, Herth W, Knappe J (1992) Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. The Journal of biological chemistry 267: 18073–18079. 1325457

22. Matayoshi S, Oda H (1985) Detection of fine spiral structures (spirosomes) by weak sonication in some bacterial strains. Microbiology and immunology 29: 13–20. 3990585

23. Matayoshi S, Oda H, Sarwar G (1989) Relationship between the production of spirosomes and anaerobic glycolysis activity in Escherichia coli B. Journal of general microbiology 135: 525–529. 2695595

24. Nomura S, Masuda K, Kawata T (1989) Comparative characterization of spirosomes isolated from Lactobacillus brevis, Lactobacillus fermentum, and Lactobacillus buchneri. Microbiology and immunology 33: 23–34. 2733612

25. Ueki Y, Masuda K, Kawata T (1982) Purification and characterization of spirosomes in Lactobacillus brevis. Microbiology and immunology 26: 199–211. 7109979

26. Yamato M, Takahashi Y, Tomotake H, Ota F, Hirota K, et al. (1994) Monoclonal antibodies to spirosin of Yersinia enterocolitica and analysis of the localization of spirosome by use of them. Microbiology and immunology 38: 177–182. 7521508

27. Burghout P, Bootsma HJ, Kloosterman TG, Bijlsma JJ, de Jongh CE, et al. (2007) Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA. Journal of bacteriology 189: 6540–6550. 17631629

28. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry 25: 1605–1612. 15264254

29. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature genetics 38: 779–786. 16804543

30. Xu P, Ge X, Chen L, Wang X, Dou Y, et al. (2011) Genome-wide essential gene identification in Streptococcus sanguinis. Scientific reports 1: 125. doi: 10.1038/srep00125 22355642

31. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. Journal of molecular biology 372: 774–797. 17681537

32. Zhang YH (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnology advances 29: 715–725. doi: 10.1016/j.biotechadv.2011.05.020 21672618

33. Encheva V, Shah HN, Gharbia SE (2009) Proteomic analysis of the adaptive response of Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. Microbiology 155: 2429–2441. doi: 10.1099/mic.0.026138-0 19389776

34. Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Havarstein LS (2009) Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155: 2223–2234. doi: 10.1099/mic.0.026328-0 19389766

35. Gubellini F, Verdon G, Karpowich NK, Luff JD, Boel G, et al. (2011) Physiological response to membrane protein overexpression in E. coli. Molecular & cellular proteomics: MCP 10: M111 007930.

36. Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, et al. (2007) Consequences of membrane protein overexpression in Escherichia coli. Molecular & cellular proteomics: MCP 6: 1527–1550.

37. Okorokov AL, Chaban YL, Bugreev DV, Hodgkinson J, Mazin AV, et al. (2010) Structure of the hDmc1-ssDNA filament reveals the principles of its architecture. PloS one 5: e8586. doi: 10.1371/journal.pone.0008586 20062530

38. Williams RC, Spengler SJ (1986) Fibers of RecA protein and complexes of RecA protein and single-stranded phi X174 DNA as visualized by negative-stain electron microscopy. Journal of molecular biology 187: 109–118. 2937923

39. Yu X, VanLoock MS, Yang S, Reese JT, Egelman EH (2004) What is the structure of the RecA-DNA filament? Current protein & peptide science 5: 73–79.

40. Berge M, Mortier-Barriere I, Martin B, Claverys JP (2003) Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Molecular microbiology 50: 527–536. 14617176

41. Cox MM (1999) Recombinational DNA repair in bacteria and the RecA protein. Progress in nucleic acid research and molecular biology 63: 311–366. 10506835

42. Mizuno N, Dramicanin M, Mizuuchi M, Adam J, Wang Y, et al. (2013) MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition. Proceedings of the National Academy of Sciences of the United States of America 110: E2441–2450. doi: 10.1073/pnas.1309499110 23776210

43. Shih YL, Rothfield L (2006) The bacterial cytoskeleton. Microbiology and molecular biology reviews: MMBR 70: 729–754. 16959967

44. Stubbs G, Kendall A (2012) Helical viruses. Advances in experimental medicine and biology 726: 631–658. doi: 10.1007/978-1-4614-0980-9_28 22297534

45. Seitz P, Blokesch M (2013) DNA-uptake machinery of naturally competent Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America 110: 17987–17992. doi: 10.1073/pnas.1315647110 24127573

46. Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP (2013) Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infection and immunity 81: 1341–1353. doi: 10.1128/IAI.01096-12 23403556

47. Berge M, Moscoso M, Prudhomme M, Martin B, Claverys JP (2002) Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Molecular microbiology 45: 411–421. 12123453

48. Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, et al. (2013) Specific DNA recognition mediated by a type IV pilin. Proceedings of the National Academy of Sciences of the United States of America 110: 3065–3070. doi: 10.1073/pnas.1218832110 23386723

49. van Schaik EJ, Giltner CL, Audette GF, Keizer DW, Bautista DL, et al. (2005) DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. Journal of bacteriology 187: 1455–1464. 15687210

50. Provvedi R, Dubnau D (1999) ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Molecular microbiology 31: 271–280. 9987128

51. Kurre R, Maier B (2012) Oxygen depletion triggers switching between discrete speed modes of gonococcal type IV pili. Biophysical journal 102: 2556–2563. doi: 10.1016/j.bpj.2012.04.020 22713571

52. Maier B, Chen I, Dubnau D, Sheetz MP (2004) DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nature structural & molecular biology 11: 643–649.

53. von Hippel PH, Berg OG (1989) Facilitated target location in biological systems. The Journal of biological chemistry 264: 675–678. 2642903

54. Prudhomme M, Camilli A, Claverys J-P (2007) In vitro mariner mutagenesis of Streptococcus pneumoniae: tools and traps. In: Hakenbeck R, Chhatwal GS, editors. The Molecular Biology of Streptococci Norwich, UK: Horizon Scientific Press. pp. 511–517.

55. Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, et al. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379: 466–469. 8559255

56. Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, et al. (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nature protocols 4: 698–705. doi: 10.1038/nprot.2009.36 19373234

57. Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. Journal of structural biology 142: 334–347. 12781660

58. Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, et al. (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nature protocols 3: 1941–1974. doi: 10.1038/nprot.2008.156 19180078

59. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, et al. (2007) EMAN2: an extensible image processing suite for electron microscopy. Journal of structural biology 157: 38–46. 16859925

60. Martin B, Granadel C, Campo N, Henard V, Prudhomme M, et al. (2010) Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Molecular microbiology 75: 1513–1528. doi: 10.1111/j.1365-2958.2010.07071.x 20180906

61. Claverys JP, Martin B, Polard P (2009) The genetic transformation machinery: composition, localization, and mechanism. FEMS microbiology reviews 33: 643–656. doi: 10.1111/j.1574-6976.2009.00164.x 19228200

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#