Phosphorylation at the Homotypic Interface Regulates Nucleoprotein Oligomerization and Assembly of the Influenza Virus Replication Machinery
Replication and transcription by negative-sense RNA viruses occurs in large macromolecular complexes. These complexes contain the viral polymerase, genomic RNA, and multiple copies of nucleoprotein that bind RNA and oligomerize to coat the genome. For influenza virus, nucleoprotein (NP) non-specifically binds nucleic acids and spontaneously oligomerizes. It is essential that a portion of NP be maintained as a monomer so that it can selectively oligomerize into replication complexes. Despite the fact that this process must be tightly regulated during the viral life cycle, how this regulation is achieved is largely unknown. Here we show that phosphorylation of NP negatively regulates assembly of the influenza virus replication machinery. We identified two phosphorylation sites on opposite sides of the NP:NP interface and showed that phosphorylation at either site blocks homotypic interactions, distorting the monomer:oligomer balance of NP in cells and severely impairing virus replication. Our findings show that the phospho-regulated conversion of NP between mono- and oligomeric states is important for RNP formation, gene expression and viral replication. Moreover, we showed that these critical phosphorylation sites play the same role in influenza B virus and are likely present in influenza C and D viruses, suggesting our results are broadly applicable across viral strains and genera and reveal a global regulatory strategy for Orthomyxoviridae.
Vyšlo v časopise:
Phosphorylation at the Homotypic Interface Regulates Nucleoprotein Oligomerization and Assembly of the Influenza Virus Replication Machinery. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004826
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004826
Souhrn
Replication and transcription by negative-sense RNA viruses occurs in large macromolecular complexes. These complexes contain the viral polymerase, genomic RNA, and multiple copies of nucleoprotein that bind RNA and oligomerize to coat the genome. For influenza virus, nucleoprotein (NP) non-specifically binds nucleic acids and spontaneously oligomerizes. It is essential that a portion of NP be maintained as a monomer so that it can selectively oligomerize into replication complexes. Despite the fact that this process must be tightly regulated during the viral life cycle, how this regulation is achieved is largely unknown. Here we show that phosphorylation of NP negatively regulates assembly of the influenza virus replication machinery. We identified two phosphorylation sites on opposite sides of the NP:NP interface and showed that phosphorylation at either site blocks homotypic interactions, distorting the monomer:oligomer balance of NP in cells and severely impairing virus replication. Our findings show that the phospho-regulated conversion of NP between mono- and oligomeric states is important for RNP formation, gene expression and viral replication. Moreover, we showed that these critical phosphorylation sites play the same role in influenza B virus and are likely present in influenza C and D viruses, suggesting our results are broadly applicable across viral strains and genera and reveal a global regulatory strategy for Orthomyxoviridae.
Zdroje
1. Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annual review of pathology. 2008;3:499–522. doi: 10.1146/annurev.pathmechdis.3.121806.154316 18039138
2. Palese P, Shaw M. Orthomyxoviridae: The Viruses and Their Replication. Fields Virology, Volume 2 (eds Knipe DM and Howley PM). 2001:1647–89.
3. Mehle A, McCullers JA. Structure and function of the influenza virus replication machinery and PB1-F2. In: Webster RG, Monto AS, Braciale TJ, Lamb RA, editors. Textbook of Influenza, 2nd Edition. Oxford, UK: John Wiley & Sons, Ltd; 2013. p. 133–45.
4. Hutchinson EC, Fodor E. Transport of the influenza virus genome from nucleus to nucleus. Viruses. 2013;5(10):2424–46. doi: 10.3390/v5102424 24104053
5. Plotch SJ, Bouloy M, Ulmanen I, Krug RM. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell. 1981;23(3):847–58. 6261960
6. Jorba N, Coloma R, Ortin J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 2009;5(5):e1000462. doi: 10.1371/journal.ppat.1000462 19478885
7. Vreede FT, Jung TE, Brownlee GG. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol. 2004;78(17):9568–72. doi: 10.1128/jvi.78.17.9568–9572.2004 15308750
8. Moeller A, Kirchdoerfer RN, Potter CS, Carragher B, Wilson IA. Organization of the influenza virus replication machinery. Science. 2012;338(6114):1631–4. doi: 10.1126/science.1227270 23180774
9. Arranz R, Coloma R, Chichon FJ, Conesa JJ, Carrascosa JL, Valpuesta JM, et al. The structure of native influenza virion ribonucleoproteins. Science. 2012;338(6114):1634–7. doi: 10.1126/science.1228172 23180776
10. Pons MW, Schulze IT, Hirst GK. Isolation and characterization of the ribonucleoprotein of influenza virus. Virology. 1969;39(2):250–9. doi: 10.1016/0042-6822(69)90045-2 4186524
11. Klumpp K, Ruigrok RW, Baudin F. Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. Embo J. 1997;16(6):1248–57. 9135141
12. York A, Hengrung N, Vreede FT, Huiskonen JT, Fodor E. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc Natl Acad Sci U S A. 2013;110(45):E4238–45. doi: 10.1073/pnas.1315068110 24145413
13. Ye Q, Krug RM, Tao YJ. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature. 2006;444(7122):1078–82. doi: 10.1038/nature05379 17151603
14. Ng AK, Zhang H, Tan K, Li Z, Liu JH, Chan PK, et al. Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. Faseb J. 2008;22(10):3638–47. doi: 10.1096/fj.08-112110 18614582
15. Chan WH, Ng AK, Robb NC, Lam MK, Chan PK, Au SW, et al. Functional analysis of the influenza virus H5N1 nucleoprotein tail loop reveals amino acids that are crucial for oligomerization and ribonucleoprotein activities. J Virol. 2010;84(14):7337–45. doi: 10.1128/JVI.02474-09 20463064
16. Shen Y-F, Chen Y-H, Chu S-Y, Lin M-I, Hsu H-T, Wu P-Y, et al. E339…R416 salt bridge of nucleoprotein as a feasible target for influenza virus inhibitors. Proceedings of the National Academy of Sciences. 2011;108(40):16515–20. doi: 10.1073/pnas.1113107108 21930946
17. Coloma R, Valpuesta JM, Arranz R, Carrascosa JL, Ortin J, Martin-Benito J. The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog. 2009;5(6):e1000491. doi: 10.1371/journal.ppat.1000491 19557158
18. Elton D, Medcalf E, Bishop K, Digard P. Oligomerization of the influenza virus nucleoprotein: identification of positive and negative sequence elements. Virology. 1999;260(1):190–200. doi: 10.1006/viro.1999.9818 10405371
19. Marklund JK, Ye Q, Dong J, Tao YJ, Krug RM. Sequence in the Influenza A Virus Nucleoprotein Required for Viral Polymerase Binding and RNA Synthesis. Journal of Virology. 2012;86(13):7292–7. doi: 10.1128/jvi.00014-12 22532672
20. Ye Q, Guu TSY, Mata DA, Kuo R-L, Smith B, Krug RM, et al. Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein. MBio. 2013;4(1). doi: 10.1128/mBio.00467-12
21. Resa-Infante P, Jorba N, Coloma R, Ortin J. The influenza virus RNA synthesis machine: advances in its structure and function. RNA Biol. 2011;8(2):207–15. 21358279
22. Tao YJ, Ye Q. RNA virus replication complexes. PLoS Pathog. 2010;6(7):e1000943. doi: 10.1371/journal.ppat.1000943 20661480
23. Zheng W, Tao YJ. Structure and assembly of the influenza A virus ribonucleoprotein complex. FEBS Lett. 2013;587(8):1206–14. doi: 10.1016/j.febslet.2013.02.048 23499938
24. Chenavas S, Estrozi LF, Slama-Schwok A, Delmas B, Di Primo C, Baudin F, et al. Monomeric nucleoprotein of influenza A virus. PLoS Pathog. 2013;9(3):e1003275. doi: 10.1371/journal.ppat.1003275 23555270
25. Vreede FT, Ng AK, Shaw PC, Fodor E. Stabilization of influenza virus replication intermediates is dependent on the RNA-binding but not the homo-oligomerization activity of the viral nucleoprotein. J Virol. 2011;85(22):12073–8. doi: 10.1128/jvi.00695-11 21917965
26. Yamanaka K, Ishihama A, Nagata K. Reconstitution of influenza virus RNA-nucleoprotein complexes structurally resembling native viral ribonucleoprotein cores. The Journal of biological chemistry. 1990;265(19):11151–5. 2358455
27. Turrell L, Lyall JW, Tiley LS, Fodor E, Vreede FT. The role and assembly mechanism of nucleoprotein in influenza A virus ribonucleoprotein complexes. Nature communications. 2013;4:1591. doi: 10.1038/ncomms2589 23481399
28. Baudin F, Bach C, Cusack S, Ruigrok RW. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. Embo J. 1994;13(13):3158–65. 8039508
29. Tarus B, Bakowiez O, Chenavas S, Duchemin L, Estrozi LF, Bourdieu C, et al. Oligomerization paths of the nucleoprotein of influenza A virus. Biochimie. 2012;94(3):776–85. doi: 10.1016/j.biochi.2011.11.009 22155087
30. Su CY, Cheng TJ, Lin MI, Wang SY, Huang WI, Lin-Chu SY, et al. High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity. Proc Natl Acad Sci U S A. 2010;107(45):19151–6. doi: 10.1073/pnas.1013592107 20974907
31. Gerritz SW, Cianci C, Kim S, Pearce BC, Deminie C, Discotto L, et al. Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proc Natl Acad Sci U S A. 2011;108(37):15366–71. doi: 10.1073/pnas.1107906108 21896751
32. Kao RY, Yang D, Lau L-S, Tsui WHW, Hu L, Dai J, et al. Identification of influenza A nucleoprotein as an antiviral target. Nat Biotech. 2010;28(6):600–5. doi: 10.1038/nbt.1638 20512121
33. Masters PS, Banerjee AK. Complex formation with vesicular stomatitis virus phosphoprotein NS prevents binding of nucleocapsid protein N to nonspecific RNA. J Virol. 1988;62(8):2658–64. 2839693
34. Curran J, Marq JB, Kolakofsky D. An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J Virol. 1995;69(2):849–55. 7815552
35. Mavrakis M, Méhouas S, Réal E, Iseni F, Blondel D, Tordo N, et al. Rabies virus chaperone: identification of the phosphoprotein peptide that keeps nucleoprotein soluble and free from non-specific RNA. Virology. 2006;349(2):422–9. doi: 10.1016/j.virol.2006.01.030 16494915
36. Mondal A, Roy A, Sarkar S, Mukherjee J, Ganguly T, Chattopadhyay D. Interaction of chandipura virus N and P proteins: identification of two mutually exclusive domains of N involved in interaction with P. PLoS One. 2012;7(4):e34623. doi: 10.1371/journal.pone.0034623 22485180
37. Kistner O, Muller K, Scholtissek C. Differential phosphorylation of the nucleoprotein of influenza A viruses. J Gen Virol. 1989;70 (Pt 9):2421–31. 2778438
38. Kistner O, Muller H, Becht H, Scholtissek C. Phosphopeptide fingerprints of nucleoproteins of various influenza A virus strains grown in different host cells. J Gen Virol. 1985;66 (Pt 3):465–72.
39. Privalsky ML, Penhoet EE. Phosphorylated protein component present in influenza virions. J Virol. 1977;24(1):401–5. 904030
40. Privalsky ML, Penhoet EE. The structure and synthesis of influenza virus phosphoproteins. The Journal of biological chemistry. 1981;256(11):5368–76. 7240143
41. Hutchinson EC, Denham EM, Thomas B, Trudgian DC, Hester SS, Ridlova G, et al. Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry. PLoS Pathog. 2012;8(11):e1002993. doi: 10.1371/journal.ppat.1002993 23144613
42. Liao TL, Wu CY, Su WC, Jeng KS, Lai MM. Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. Embo J. 2010;29(22):3879–90. doi: 10.1038/emboj.2010.250 20924359
43. Arrese M, Portela A. Serine 3 is critical for phosphorylation at the N-terminal end of the nucleoprotein of influenza virus A/Victoria/3/75. J Virol. 1996;70(6):3385–91. 8648669
44. Sasaki Y, Hagiwara K, Kakisaka M, Yamada K, Murakami T, Aida Y. Importin α3/Qip1 is involved in multiplication of mutant influenza virus with alanine mutation at amino acid 9 independently of nuclear transport function. PLoS One. 2013;8(1):e55765. doi: 10.1371/journal.pone.0055765 23383277
45. Mena I, Jambrina E, Albo C, Perales B, Ortin J, Arrese M, et al. Mutational analysis of influenza A virus nucleoprotein: identification of mutations that affect RNA replication. J Virol. 1999;73(2):1186–94. 9882320
46. Li Z, Watanabe T, Hatta M, Watanabe S, Nanbo A, Ozawa M, et al. Mutational analysis of conserved amino acids in the influenza A virus nucleoprotein. J Virol. 2009;83(9):4153–62. doi: 10.1128/jvi.02642-08 19225007
47. Turrell L, Hutchinson EC, Vreede FT, Fodor E. Regulation of influenza a virus nucleoprotein oligomerization by phosphorylation. J Virol. 2015;89(2):1452–5. doi: 10.1128/jvi.02332-14 25355893
48. Chenavas S, Crepin T, Delmas B, Ruigrok RW, Slama-Schwok A. Influenza virus nucleoprotein: structure, RNA binding, oligomerization and antiviral drug target. Future microbiology. 2013;8:1537–45. doi: 10.2217/fmb.13.128 24266354
49. Momose F, Basler CF, O'Neill RE, Iwamatsu A, Palese P, Nagata K. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol. 2001;75(4):1899–908. 11160689
50. Boulo S, Akarsu H, Lotteau V, Muller CW, Ruigrok RW, Baudin F. Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein. Virology. 2011;409(1):84–90. doi: 10.1016/j.virol.2010.10.001 20974480
51. Sharma S, Mayank AK, Nailwal H, Tripathi S, Patel JR, Bowzard JB, et al. Influenza A viral nucleoprotein interacts with cytoskeleton scaffolding protein α-actinin-4 for viral replication. FEBS J. 2014;281(13):2899–914. doi: 10.1111/febs.12828 24802111
52. Biswas SK, Boutz PL, Nayak DP. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J Virol. 1998;72(7):5493–501. 9621005
53. Ng AK, Lam MK, Zhang H, Liu J, Au SW, Chan PK, et al. Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein. J Virol. 2012;86(12):6758–67. doi: 10.1128/JVI.00073-12 22496219
54. Zheng W, Olson J, Vakharia V, Tao YJ. The crystal structure and RNA-binding of an orthomyxovirus nucleoprotein. PLoS Pathog. 2013;9(9):e1003624. doi: 10.1371/journal.ppat.1003624 24068932
55. Prokudina-Kantorovich EN, Semenova NP. Intracellular Oligomerization of Influenza Virus Nucleoprotein. Virology. 1996;223(1):51–6. http://dx.doi.org/10.1006/viro.1996.0454. 8806539
56. Zhao H, Ekstrom M, Garoff H. The M1 and NP proteins of influenza A virus form homo- but not heterooligomeric complexes when coexpressed in BHK-21 cells. Journal of General Virology. 1998;79(10):2435–46. 9780049
57. Mehle A, Doudna JA. An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe. 2008;4(2):111–22. doi: 10.1016/j.chom.2008.06.007 18692771
58. Regan JF, Liang Y, Parslow TG. Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA. J Virol. 2006;80(1):252–61. doi: 10.1128/JVI.80.1.252–261.2006 16352550
59. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97(11):6108–13. doi: 10.1073/pnas.100133697 10801978
60. Neumann G, Fujii K, Kino Y, Kawaoka Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci U S A. 2005;102(46):16825–9. doi: 10.1073/pnas.0505587102 16267134
61. Yewdell JW, Frank E, Gerhard W. Expression of influenza A virus internal antigens on the surface of infected P815 cells. J Immunol. 1981;126(5):1814–9. 7217668
62. Kirui J, Bucci MD, Poole DS, Mehle A. Conserved features of the PB2 627 domain impact influenza virus polymerase function and replication. J Virol. 2014;88(11):5977–86. doi: 10.1128/JVI.00508-14 24623411
63. Tran V, Moser LA, Poole DS, Mehle A. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J Virol. 2013;87(24):13321–9. doi: 10.1128/JVI.02381-13 24089552
64. Matrosovich M, Matrosovich T, Garten W, Klenk HD. New low-viscosity overlay medium for viral plaque assays. Virology journal. 2006;3:63. doi: 10.1186/1743-422X-3-63 16945126
65. Richards AL, Vincent CE, Guthals A, Rose CM, Westphall MS, Bandeira N, et al. Neutron-encoded signatures enable product ion annotation from tandem mass spectra. Mol Cell Proteomics. 2013;12(12):3812–23. doi: 10.1074/mcp.M113.028951 24043425
66. Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, et al. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cell Proteomics. 2012;11(9):724–44. doi: 10.1074/mcp.M112.019208 22683509
67. Vincent CE, Potts GK, Ulbrich A, Westphall MS, Atwood JA, Coon JJ, et al. Segmentation of Precursor Mass Range Using "Tiling" Approach Increases Peptide Identifications for MS1-Based Label-Free Quantification. Anal Chem. 2013;85(5):2825–32. doi: 10.1021/Ac303352n 23350991
68. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, et al. The one hour yeast proteome. Mol Cell Proteomics. 2014;13(1):339–47. doi: 10.1074/mcp.M113.034769 24143002
69. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, et al. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res. 2011;10(12):5354–62. doi: 10.1021/pr200611n 22073976
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Infection
- Toxin-Induced Necroptosis Is a Major Mechanism of Lung Damage
- Transgenic Fatal Familial Insomnia Mice Indicate Prion Infectivity-Independent Mechanisms of Pathogenesis and Phenotypic Expression of Disease
- A Temporal Gate for Viral Enhancers to Co-opt Toll-Like-Receptor Transcriptional Activation Pathways upon Acute Infection