Macrocyclic Lactones Differ in Interaction with Recombinant P-Glycoprotein 9 of the Parasitic Nematode and Ketoconazole in a Yeast Growth Assay
Macrocyclic lactones (MLs) are widely used drugs against parasitic nematodes, but drug resistance is rapidly increasing in prevalence and spatial distribution in parasites of ruminants and horses, and is suspected in human nematodes after mass drug applications. Changes in expression levels or the amino acid sequences of P-glycoprotein (Pgp) transporters have frequently been implicated in ML resistance, but direct evidence for transport of MLs by nematode Pgps is still missing. Here, cloning of pgp-9 of the equine parasite Cylicocyclus elongatus and its functional recombinant expression in a Saccharomyces cerevisiae yeast strain deficient in seven endogenous ABC transporters is described. Expression decreased susceptibility to several fungicidal mammalian Pgp substrates including e.g. actinomycin D and ketoconazole, but had no influence on susceptibility to the benzimidazole thiabendazole, which is active against both, yeasts and nematodes. Addition of some MLs strongly increased ketoconazole susceptibility in yeasts expressing C. elongatus Pgp-9, while other MLs had no effect. These interactions are a strong hint that some MLs act as substrates or at least as inhibitors of Pgp-9 mediated drug transport.
Vyšlo v časopise:
Macrocyclic Lactones Differ in Interaction with Recombinant P-Glycoprotein 9 of the Parasitic Nematode and Ketoconazole in a Yeast Growth Assay. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004781
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004781
Souhrn
Macrocyclic lactones (MLs) are widely used drugs against parasitic nematodes, but drug resistance is rapidly increasing in prevalence and spatial distribution in parasites of ruminants and horses, and is suspected in human nematodes after mass drug applications. Changes in expression levels or the amino acid sequences of P-glycoprotein (Pgp) transporters have frequently been implicated in ML resistance, but direct evidence for transport of MLs by nematode Pgps is still missing. Here, cloning of pgp-9 of the equine parasite Cylicocyclus elongatus and its functional recombinant expression in a Saccharomyces cerevisiae yeast strain deficient in seven endogenous ABC transporters is described. Expression decreased susceptibility to several fungicidal mammalian Pgp substrates including e.g. actinomycin D and ketoconazole, but had no influence on susceptibility to the benzimidazole thiabendazole, which is active against both, yeasts and nematodes. Addition of some MLs strongly increased ketoconazole susceptibility in yeasts expressing C. elongatus Pgp-9, while other MLs had no effect. These interactions are a strong hint that some MLs act as substrates or at least as inhibitors of Pgp-9 mediated drug transport.
Zdroje
1. Vercruysse J, Rew RS (2002) Macrocyclic lactones in antiparasitic therapy: Wallingford: CABI.
2. Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20: 469–476. 15363440
3. Anziani OS, Suarez V, Guglielmone AA, Warnke O, Grande H, et al. (2004) Resistance to benzimidazole and macrocyclic lactone anthelmintics in cattle nematodes in Argentina. Vet Parasitol 122: 303–306. 15262008
4. Bartley DJ, McArthur CL, Devin LM, Sutra JF, Morrison AA, et al. (2012) Characterisation of macrocyclic lactone resistance in two field-derived isolates of Cooperia oncophora. Vet Parasitol 190: 454–460. doi: 10.1016/j.vetpar.2012.07.022 22884912
5. Demeler J, van Zeveren AM, Kleinschmidt N, Vercruysse J, Hoglund J, et al. (2009) Monitoring the efficacy of ivermectin and albendazole against gastro intestinal nematodes of cattle in Northern Europe. Vet Parasitol 160: 109–115. doi: 10.1016/j.vetpar.2008.10.030 19062191
6. Edmonds MD, Johnson EG, Edmonds JD (2010) Anthelmintic resistance of Ostertagia ostertagi and Cooperia oncophora to macrocyclic lactones in cattle from the western United States. Vet Parasitol 170: 224–229. doi: 10.1016/j.vetpar.2010.02.036 20347229
7. Jackson R, Rhodes AP, Pomroy WE, Leathwick DM, West DM, et al. (2006) Anthelmintic resistance and management of nematode parasites on beef cattle-rearing farms in the North Island of New Zealand. N Z Vet J 54: 289–296. 17151727
8. Osei-Atweneboana MY, Awadzi K, Attah SK, Boakye DA, Gyapong JO, et al. (2011) Phenotypic evidence of emerging ivermectin resistance in Onchocerca volvulus. PLoS Negl Trop Dis 5: e998. doi: 10.1371/journal.pntd.0000998 21468315
9. Wolstenholme AJ, Kaplan RM (2012) Resistance to macrocyclic lactones. Curr Pharm Biotechnol 13: 873–887. 22039786
10. Slocombe JO, de Gannes RV, Lake MC (2007) Macrocyclic lactone-resistant Parascaris equorum on stud farms in Canada and effectiveness of fenbendazole and pyrantel pamoate. Vet Parasitol 145: 371–376. 16962243
11. Molento MB, Antunes J, Bentes RN, Coles GC (2008) Anthelmintic resistant nematodes in Brazilian horses. Vet Rec 162: 384–385. 18359933
12. Molento MB, Nielsen MK, Kaplan RM (2012) Resistance to avermectin/milbemycin anthelmintics in equine cyathostomins—current situation. Vet Parasitol 185: 16–24. doi: 10.1016/j.vetpar.2011.10.013 22047763
13. Trawford AF, Burden FA, Hodgkinson J (2005) Suspected moxidectin resistance in cyathostomes in two donkey herds at The Donkey Sanctuary, UK. 20th International Conference of the World Association for the Advancement of Veterinary Parasitology, WAAVP. New Zealand.
14. Traversa D, von Samson-Himmelstjerna G, Demeler J, Milillo P, Schurmann S, et al. (2009) Anthelmintic resistance in cyathostomin populations from horse yards in Italy, United Kingdom and Germany. Parasit Vectors 2 Suppl 2: S2. doi: 10.1186/1756-3305-2-S2-S2 19778463
15. von Samson-Himmelstjerna G, Fritzen B, Demeler J, Schurmann S, Rohn K, et al. (2007) Cases of reduced cyathostomin egg-reappearance period and failure of Parascaris equorum egg count reduction following ivermectin treatment as well as survey on pyrantel efficacy on German horse farms. Vet Parasitol 144: 74–80. 17112667
16. Lake SL, Matthews JB, Kaplan RM, Hodgkinson JE (2009) Determination of genomic DNA sequences for beta-tubulin isotype 1 from multiple species of cyathostomin and detection of resistance alleles in third-stage larvae from horses with naturally acquired infections. Parasit Vectors 2 Suppl 2: S6. doi: 10.1186/1756-3305-2-S2-S6 19778467
17. Pape M, von Samson-Himmelstjerna G, Schnieder T (1999) Characterisation of the beta-tubulin gene of Cylicocyclus nassatus? Int J Parasitol 29: 1941–1947. 10961850
18. Blackhall WJ, Kuzmina T, von Samson-Himmelstjerna G (2011) beta-Tubulin genotypes in six species of cyathostomins from anthelmintic-naive Przewalski and benzimidazole-resistant brood horses in Ukraine. Parasitol Res 109: 1199–1203. doi: 10.1007/s00436-011-2426-0 21553015
19. Demeler J, Krüger N, Krücken J, von der Heyden VC, Ramünke S, et al. (2013) Phylogenetic characterization of beta-tubulins and development of pyrosequencing assays for benzimidazole resistance in cattle nematodes. PLoS One 8: e70212. doi: 10.1371/journal.pone.0070212 23950913
20. Von Samson-Himmelstjerna G, Blackhall WJ, McCarthy JS, Skuce PJ (2007) Single nucleotide polymorphism (SNP) markers for benzimidazole resistance in veterinary nematodes. Parasitology 134: 1077–1086. 17608967
21. Williamson SM, Storey B, Howell S, Harper KM, Kaplan RM, et al. (2011) Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Mol Biochem Parasitol 180: 99–105. doi: 10.1016/j.molbiopara.2011.09.003 21945142
22. Neveu C, Charvet CL, Fauvin A, Cortet J, Beech RN, et al. (2010) Genetic diversity of levamisole receptor subunits in parasitic nematode species and abbreviated transcripts associated with resistance. Pharmacogenet Genomics 20: 414–425. doi: 10.1097/FPC.0b013e328338ac8c 20531256
23. Fauvin A, Charvet C, Issouf M, Cortet J, Cabaret J, et al. (2010) cDNA-AFLP analysis in levamisole-resistant Haemonchus contortus reveals alternative splicing in a nicotinic acetylcholine receptor subunit. Mol Biochem Parasitol 170: 105–107. doi: 10.1016/j.molbiopara.2009.11.007 19932716
24. Njue AI, Prichard RK (2004) Genetic variability of glutamate-gated chloride channel genes in ivermectin-susceptible and-resistant strains of Cooperia oncophora. Parasitology 129: 741–751. 15648697
25. El-Abdellati A, De Graef J, Van Zeveren A, Donnan A, Skuce P, et al. (2011) Altered avr-14B gene transcription patterns in ivermectin-resistant isolates of the cattle parasites, Cooperia oncophora and Ostertagia ostertagi. Int J Parasitol 41: 951–957. doi: 10.1016/j.ijpara.2011.04.003 21683704
26. Kerboeuf D, Blackhall W, Kaminsky R, von Samson-Himmelstjerna G (2003) P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance. Int J Antimicrob Agents 22: 332–346. 13678840
27. Blackhall WJ, Liu HY, Xu M, Prichard RK, Beech RN (1998) Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Mol Biochem Parasitol 95: 193–201. 9803412
28. Demeler J, Krücken J, Algusbi S, Ramunke S, De Graef J, et al. (2013) Potential contribution of P-glycoproteins to macrocyclic lactone resistance in the cattle parasitic nematode Cooperia oncophora. Mol Biochem Parasitol 188: 10–19. doi: 10.1016/j.molbiopara.2013.01.004 23384738
29. Janssen IJ, Krücken J, Demeler J, von Samson-Himmelstjerna G (2013) Caenorhabditis elegans: modest increase of susceptibility to ivermectin in individual P-glycoprotein loss-of-function strains. Exp Parasitol 134: 171–177. doi: 10.1016/j.exppara.2013.03.005 23518455
30. Ardelli BF, Prichard RK (2013) Inhibition of P-glycoprotein enhances sensitivity of Caenorhabditis elegans to ivermectin. Vet Parasitol 191: 264–275. doi: 10.1016/j.vetpar.2012.09.021 23062691
31. Yan R, Urdaneta-Marquez L, Keller K, James CE, Davey MW, et al. (2012) The role of several ABC transporter genes in ivermectin resistance in Caenorhabditis elegans. Vet Parasitol 190: 519–529. doi: 10.1016/j.vetpar.2012.06.038 22840641
32. Kerboeuf D, Guegnard F (2011) Anthelmintics are substrates and activators of nematode P glycoprotein. Antimicrob Agents Chemother 55: 2224–2232. doi: 10.1128/AAC.01477-10 21300828
33. Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, et al. (2001) The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3: 207–214. 11321575
34. Miltsch SM, Krücken J, Demeler J, Janssen IJ, Krüger N, et al. (2012) Decreased emodepside sensitivity in unc-49 gamma-aminobutyric acid (GABA)-receptor-deficient Caenorhabditis elegans. Int J Parasitol 42: 761–770. doi: 10.1016/j.ijpara.2012.05.009 22727682
35. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. 17846036
36. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27: 1164–1165. doi: 10.1093/bioinformatics/btr088 21335321
37. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321. doi: 10.1093/sysbio/syq010 20525638
38. Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60: 685–699. doi: 10.1093/sysbio/syr041 21540409
39. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307–1320. doi: 10.1093/molbev/msn067 18367465
40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121 21546353
41. Krücken J, Hosse RJ, Mouafo AN, Entzeroth R, Bierbaum S, et al. (2008) Excystation of Eimeria tenella sporozoites impaired by antibody recognizing gametocyte/oocyst antigens GAM22 and GAM56. Eukaryot Cell 7: 202–211. 18083827
42. Kerboeuf D, Guégnard F, Vern YL (2003) Detection of P-glycoprotein-mediated multidrug resistance against anthelmintics in Haemonchus contortus using anti-human mdr1 monoclonal antibodies. Parasitol Res 91: 79–85. 12898231
43. Toussaint M, Conconi A (2006) High-throughput and sensitive assay to measure yeast cell growth: a bench protocol for testing genotoxic agents. Nat Protoc 1: 1922–1928. 17487177
44. R Development Core Team (2011) A language and environment for statistical computing. 2.14.2 ed. Vienna, Austria: R Foundation for Statistical Computing.
45. Kahm M, Hasenbrink G, Lichtenberg-Frate H, Ludwig J, Kschischo M (2010) grofit: Fitting biological growth curves with R. J Stat Softw 33: 1–21. 20808728
46. Jeong H, Herskowitz I, Kroetz DL, Rine J (2007) Function-altering SNPs in the human multidrug transporter gene ABCB1 identified using a Saccharomyces-based assay. PLoS Genet 3: e39. 17352537
47. Pal D, Mitra AK (2006) MDR- and CYP3A4-mediated drug-drug interactions. J Neuroimmune Pharmacol 1: 323–339. 18040809
48. Kotze AC, Hunt PW, Skuce P, von Samson-Himmelstjerna G, Martin RJ, et al. (2014) Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. International Journal for Parasitology: Drugs and Drug Resistance 4.
49. Lespine A, Menez C, Bourguinat C, Prichard RK (2012) P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance. Int J Parasitol Drugs Drug Resist 2: 58–75. doi: 10.1016/j.ijpddr.2011.10.001 24533264
50. Beech RN, Skuce P, Bartley DJ, Martin RJ, Prichard RK, et al. (2011) Anthelmintic resistance: markers for resistance, or susceptibility? Parasitology 138: 160–174. doi: 10.1017/S0031182010001198 20825689
51. Xu M, Molento M, Blackhall W, Ribeiro P, Beech R, et al. (1998) Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Mol Biochem Parasitol 91: 327–335. 9566525
52. Dicker AJ, Nisbet AJ, Skuce PJ (2011) Gene expression changes in a P-glycoprotein (Tci-pgp-9) putatively associated with ivermectin resistance in Teladorsagia circumcincta. Int J Parasitol 41: 935–942. doi: 10.1016/j.ijpara.2011.03.015 21683705
53. Janssen IJ, Krücken J, Demeler J, Basiaga M, Kornas S, et al. (2013) Genetic variants and increased expression of Parascaris equorum P-glycoprotein-11 in populations with decreased ivermectin susceptibility. PLoS ONE 8: e61635. doi: 10.1371/journal.pone.0061635 23637871
54. Godoy P, Lian J, Beech RN, Prichard RK (2015) Haemonchus contortus P-glycoprotein-2: in situ localisation and characterisation of macrocyclic lactone transport. Int J Parasitol 45: 85–93. doi: 10.1016/j.ijpara.2014.09.008 25486495
55. Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490: 566–569. doi: 10.1038/nature11448 23000902
56. Janssen J, Kaschny K, Demeler J, Ramünke S, Burton T, et al. (2013) P-Glycoproteins in macrocyclic lactone resistanceof equine parasitic nematodes: Functional analysis of putative resistance markersusing a yeast expression system. 24th International Conference of the World Association for the Advancement of Veterinary Parasitology. Perth. pp. 421.
57. Ritchie TK, Kwon H, Atkins WM (2011) Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2. J Biol Chem 286: 39489–39496. doi: 10.1074/jbc.M111.284554 21937435
58. Zhou Y, Gottesman MM, Pastan I (1999) The extracellular loop between TM5 and TM6 of P-glycoprotein is required for reactivity with monoclonal antibody UIC2. Arch Biochem Biophys 367: 74–80. 10375401
59. Goda K, Fenyvesi F, Bacso Z, Nagy H, Marian T, et al. (2007) Complete inhibition of P-glycoprotein by simultaneous treatment with a distinct class of modulators and the UIC2 monoclonal antibody. J Pharmacol Exp Ther 320: 81–88. 17050779
60. Kerboeuf D, Guegnard F, Le Vern Y (2002) Analysis and partial reversal of multidrug resistance to anthelmintics due to P-glycoprotein in Haemonchus contortus eggs using Lens culinaris lectin. Parasitol Res 88: 816–821. 12172813
61. Riou M, Koch C, Delaleu B, Berthon P, Kerboeuf D (2005) Immunolocalisation of an ABC transporter, P-glycoprotein, in the eggshells and cuticles of free-living and parasitic stages of Haemonchus contortus. Parasitol Res 96: 142–148. 15856301
62. AlGusbi SA, Krücken J, Ramünke S, von Samson-Himmelstjerna G, Demeler J (2014) Analysis of putative inhibitors of anthelmintic resistance mechanisms in cattle gastrointestinal nematodes. Int J Parasitol in press.
63. Pettengill MA, Lam VW, Ollawa I, Marques-da-Silva C, Ojcius DM (2012) Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells. PLoS One 7: e48456. doi: 10.1371/journal.pone.0048456 23119027
64. Lim LE, Vilcheze C, Ng C, Jacobs WR Jr., Ramon-Garcia S, et al. (2013) Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob Agents Chemother 57: 1040–1046. doi: 10.1128/AAC.01696-12 23165468
65. Muhammed Ameen S, Drancourt M (2013) Ivermectin lacks antituberculous activity. J Antimicrob Chemother 68: 1936–1937. doi: 10.1093/jac/dkt089 23587653
66. Silva LV, Sanguinetti M, Vandeputte P, Torelli R, Rochat B, et al. (2013) Milbemycins: more than efflux inhibitors for fungal pathogens. Antimicrob Agents Chemother 57: 873–886. doi: 10.1128/AAC.02040-12 23208712
67. Alvarez AI, Merino G, Molina AJ, Pulido MM, McKellar QA, et al. (2006) Role of ABC transporters in veterinary drug research and parasite resistance. Curr Drug Deliv 3: 199–206. 16611006
68. Mechetner EB (1995) Review Oncologic, Endocrine & Metabolic: Multidrug resistance: progress analysis. Expert Opinion on Therapeutic Patents 5: 535–542.
69. Geyer J, Janko C (2012) Treatment of MDR1 mutant dogs with macrocyclic lactones. Curr Pharm Biotechnol 13: 969–986. 22039792
70. Lespine A, Martin S, Dupuy J, Roulet A, Pineau T, et al. (2007) Interaction of macrocyclic lactones with P-glycoprotein: Structure–affinity relationship. Eur J Pharm Sci 30: 84–94. 17134887
71. Griffin J, Fletcher N, Clemence R, Blanchflower S, Brayden DJ (2005) Selamectin is a potent substrate and inhibitor of human and canine P-glycoprotein. J Vet Pharmacol Ther 28: 257–265. 15953199
72. Dupuy J, Alvinerie M, Menez C, Lespine A (2010) Interaction of anthelmintic drugs with P-glycoprotein in recombinant LLC-PK1-mdr1a cells. Chem Biol Interact 186: 280–286. doi: 10.1016/j.cbi.2010.05.013 20513441
73. Ballent M, Mate L, Virkel G, Sallovitz J, Viviani P, et al. (2014) Intestinal drug transport: ex vivo evaluation of the interactions between ABC transporters and anthelmintic molecules. J Vet Pharmacol Ther 37: 332–337. doi: 10.1111/jvp.12112 24611483
74. Takano M, Hasegawa R, Fukuda T, Yumoto R, Nagai J, et al. (1998) Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol 358: 289–294. 9822896
75. Walker B, Izumikawa K, Tsai HF, Bennett JE (2014) Milbemycin A4 oxime as a probe of azole transport in Candida glabrata. FEMS Yeast Res 14: 755–761. doi: 10.1111/1567-1364.12164 24838041
76. Li J, Jaimes KF, Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23: 34–46. doi: 10.1002/pro.2387 24155053
77. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718–1722. doi: 10.1126/science.1168750 19325113
78. Shapiro AB, Fox K, Lam P, Ling V (1999) Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur J Biochem 259: 841–850. 10092872
79. Döppenschmitt S, Spahn-Langguth H, Regårdh C, Langguth P (1998) Radioligand-binding assay employing P-glycoprotein-overexpressing cells: Testing drug affinities to the secretory intestinal multidrug transporter. Pharm Res 15: 1001–1006. 9688051
80. Elmshauser S, Straehle LC, Kranz J, Krebber R, Geyer J (2014) Brain penetration of emodepside is increased in P-glycoprotein-deficient mice and leads to neurotoxicosis. J Vet Pharmacol Ther.
81. Krücken J, Harder A, Jeschke P, Holden-Dye L, O'Connor V, et al. (2012) Anthelmintic cyclooctadepsipeptides: complex in structure and mode of action. Trends Parasitol 28: 385–394. doi: 10.1016/j.pt.2012.06.005 22858281
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 4
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Infection
- Toxin-Induced Necroptosis Is a Major Mechanism of Lung Damage
- Transgenic Fatal Familial Insomnia Mice Indicate Prion Infectivity-Independent Mechanisms of Pathogenesis and Phenotypic Expression of Disease
- A Temporal Gate for Viral Enhancers to Co-opt Toll-Like-Receptor Transcriptional Activation Pathways upon Acute Infection