#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses


Roughly one third of the food supply relies on pollinating insects. The number of colony losses of the domesticated Honey Bee (Apis mellifera) has grown significantly in the past eight years, endangering pollination of crops like almonds. Recent research indicates that colony losses are influenced by a combination of several factors. We conducted an extensive and controlled study that allowed us to look at the contribution of different factors to colony loss. Results helped us build a predictive model showing that a single factor is often insufficient to trigger colony loss. Combination of stressors has shown to have greater impact on hive health; replication of the Deformed Wing Virus, stressful weather conditions, and Varroa destructor comprise the primary identified causes.


Vyšlo v časopise: Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004816
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004816

Souhrn

Roughly one third of the food supply relies on pollinating insects. The number of colony losses of the domesticated Honey Bee (Apis mellifera) has grown significantly in the past eight years, endangering pollination of crops like almonds. Recent research indicates that colony losses are influenced by a combination of several factors. We conducted an extensive and controlled study that allowed us to look at the contribution of different factors to colony loss. Results helped us build a predictive model showing that a single factor is often insufficient to trigger colony loss. Combination of stressors has shown to have greater impact on hive health; replication of the Deformed Wing Virus, stressful weather conditions, and Varroa destructor comprise the primary identified causes.


Zdroje

1. Levin MD (1983,) Value of Bee Pollination to U.S. Agriculture. Entomological Society of America 29: pp. 50–51(52).

2. Morse RA (1991) Honeybees forever. Trends in Ecology & Evolution 6: 337–338.

3. (2013) Beekeeping market research report. NAICS

4. vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, et al. (2009) Colony Collapse Disorder: A Descriptive Study. Plos One 4.

5. Debnam S WD, Bromenshenk J, Oliver R (2008) Colony collapse disorder: symptoms change with season and are different with verious locations. Bee culture 137: 30–32.

6. vanEngelsdorp D, D. Cox Foster, M. Frazier, N. Ostiguy, and J. Hayes (2007) Fall dwindle disease": Investigations into the causes of sudden and alarming colony losses experienced by beekeepers in the fall of 2006. Preliminary report: First revision. http://maareccaspsuedu/pressReleases/FallDwindleUpdate0107pdf.

7. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–287. 17823314

8. Maori E, Lavi S, Mozes-Koch R, Gantman Y, Peretz Y, et al. (2007) Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination. Journal of General Virology 88: 3428–3438. 18024913

9. Chen Y, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology 97: 186–188. 17880997

10. (2013) The bee informed partnership management survey results (2012).

11. Vanengelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103 Suppl 1: S80–95. doi: 10.1016/j.jip.2009.06.011 19909973

12. Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19: 614–620. doi: 10.1016/j.tim.2011.09.003 22032828

13. Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, et al. (2013) Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8: e72443. doi: 10.1371/journal.pone.0072443 23991113

14. Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P (2012) Predictive markers of honey bee colony collapse. PLoS One 7: e32151. doi: 10.1371/journal.pone.0032151 22384162

15. Bromenshenk JJ, Henderson CB, Wick CH, Stanford MF, Zulich AW, et al. (2010) Iridovirus and microsporidian linked to honey bee colony decline. PLoS One 5: e13181. doi: 10.1371/journal.pone.0013181 20949138

16. Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, et al. (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One 6: e20656. doi: 10.1371/journal.pone.0020656 21687739

17. Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, et al. (2012) Pathogen webs in collapsing honey bee colonies. PLoS One 7: e43562. doi: 10.1371/journal.pone.0043562 22927991

18. Rennich Karen JP, Dennis VanEngelsdorp, Rachel Bozarth Heather Eversole, Karen Roccasecca, Margaret Smith, Jennie Stitzinger, Michael Andree, Rob Snyder, Nathan Rice, Jay Evens, Vic Levi, Dawn Lopez and Robyn Rose (2012) 2011–2012 National Honey Bee Pests and Diseases Survey Report.

19. Martin SJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. Journal of Applied Ecology 38: 1082–1093.

20. Highfield AC, El Nagar A, Mackinder LCM, Noel LMLJ, Hall MJ, et al. (2009) Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses. Applied and Environmental Microbiology 75: 7212–7220. doi: 10.1128/AEM.02227-09 19783750

21. Carreck NL, Bell BV, Martin SJ (2010) Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. Journal of Apicultural Research 49: 93–94.

22. Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Veterinary Research 41.

23. Johnson RM, Evans JD, Robinson GE, Berenbaum MR (2009) Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences of the United States of America 106: 14790–14795. doi: 10.1073/pnas.0906970106 19706391

24. Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, et al. (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336: 1304–1306. doi: 10.1126/science.1220941 22679096

25. Schroeder DC, Martin SJ (2012) Deformed wing virus: the main suspect in unexplained honeybee deaths worldwide. Virulence 3: 589–591. doi: 10.4161/viru.22219 23154287

26. Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, et al. (2012) Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 8: e1002735. doi: 10.1371/journal.ppat.1002735 22719246

27. Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, et al. (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41: 332–352.

28. Bowen-Walker PL, Martin SJ, Gunn A (1999) The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud. J Invertebr Pathol 73: 101–106. 9878295

29. Chen YP, Pettis JS, Evans JD, Kramer M, Feldlaufer MF (2004) Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie 35: 441–448.

30. Shen MQ, Yang XL, Cox-Foster D, Cui LW (2005) The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342: 141–149. 16109435

31. Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF Jr., Evans JD, et al. (2011) Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 92: 151–155. doi: 10.1099/vir.0.023853-0 20926637

32. Nordstrom S, Fries I, Aarhus A, Hansen H, Korpela S (1999) Virus infections in Nordic honey bee colonies with no, low or severe Varroa jacobsoni infestations. Apidologie 30: 475–484.

33. Vetharaniam I (2012) Predicting reproduction rate of varroa. Ecological Modelling 224: 11–17.

34. Martin SJ (2001) Varroa destructor reproduction during the winter in Apis mellifera colonies in UK. Experimental and Applied Acarology 25: 321–325. 11603739

35. Sumpter DJT, Martin SJ (2004) The dynamics of virus epidemics in Varroa-infested honey bee colonies. Journal of Animal Ecology 73: 51–63.

36. Delaplane K. VDSJ S., Guzman Novoa E., et al. (2013) Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research 52: 1–12.

37. van Dooremalen C, Gerritsen L, Cornelissen B, van der Steen JJ, van Langevelde F, et al. (2012) Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS One 7: e36285. doi: 10.1371/journal.pone.0036285 22558421

38. Cox-Foster D, Conlan S, Holmes EC, Palacios G, Kalkstein A, et al. (2008) The latest buzz about colony collapse disorder—Response. Science 319: 725–725. doi: 10.1126/science.319.5864.725 18258879

39. Dainat B, Vanengelsdorp D, Neumann P (2012) Colony collapse disorder in Europe. Environ Microbiol Rep 4: 123–125. doi: 10.1111/j.1758-2229.2011.00312.x 23757238

40. Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P (2012) Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl Environ Microbiol 78: 981–987. doi: 10.1128/AEM.06537-11 22179240

41. Dainat B, Neumann P (2013) Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses. J Invertebr Pathol 112: 278–280. doi: 10.1016/j.jip.2012.12.009 23270875

42. Ernesto Guzman-Novoa LE, Calvete Yireli, McGowan Jannie, Kelly Paul G., Correa-Benitez Adriana (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41: 443–450.

43. Francis RM, Nielsen SL, Kryger P (2013) Varroa-virus interaction in collapsing honey bee colonies. PLoS One 8: e57540. doi: 10.1371/journal.pone.0057540 23526946

44. Higes M, Martin-Hernandez R, Botias C, Bailon EG, Gonzalez-Porto AV, et al. (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10: 2659–2669. doi: 10.1111/j.1462-2920.2008.01687.x 18647336

45. Higes M, Martin-Hernandez R, Garrido-Bailon E, Gonzalez-Porto AV, Garcia-Palencia P, et al. (2009) Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ Microbiol Rep 1: 110–113. doi: 10.1111/j.1758-2229.2009.00014.x 23765741

46. Botias C, Martin-Hernandez R, Garrido-Bailon E, Gonzalez-Porto A, Martinez-Salvador A, et al. (2012) The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade. Res Vet Sci 93: 150–155. doi: 10.1016/j.rvsc.2011.08.002 21906767

47. Gisder S, Aumeier P, Genersch E (2009) Deformed wing virus: replication and viral load in mites (Varroa destructor). Journal of General Virology 90: 463–467. doi: 10.1099/vir.0.005579-0 19141457

48. Yue C, Genersch E (2005) RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J Gen Virol 86: 3419–3424. 16298989

49. Mondet F (2014) On the Front Line: Quantitative Virus Dynamics inHoneybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor. plospathogens 10: 1–15.

50. Martin SJ, Hardy J, Villalobos E, Martin-Hernandez R, Nikaido S, et al. (2013) Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? Environ Microbiol Rep 5: 506–510. doi: 10.1111/1758-2229.12052 23864563

51. Toplak I, Jamnikar Ciglenecki U, Aronstein K, Gregorc A (2013) Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.). Viruses 5: 2282–2297. doi: 10.3390/v5092282 24056674

52. Antunez K, Martin-Hernandez R, Prieto L, Meana A, Zunino P, et al. (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11: 2284–2290. doi: 10.1111/j.1462-2920.2009.01953.x 19737304

53. Breiman L (2001) Random Forests. Machine Learning 45: 5–32.

54. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. Journal of the royal statistical society Series B (Methodological) 58: 267–288.

55. Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2: 18–22. 12028823

56. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. 407–499.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#