-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Border Patrol Gone Awry: Lung NKT Cell Activation by Exacerbates Tularemia-Like Disease
NKT cells are innate-like lymphocytes with a demonstrated role in a wide range of diseases. Often cited for their ability to rapidly produce a variety of cytokines upon activation, they have long been appreciated for their ability to “jump-start” the immune system and to shape the quality of both the innate and adaptive response. This understanding of their function has been deduced from in vitro experiments or through the in vivo administration of highly potent, chemically synthesized lipid ligands, which may not necessarily reflect a physiologically relevant response as observed in a natural infection. Using a mouse model of pulmonary tularemia, we report that intranasal infection with the live vaccine strain of F. tularensis rapidly activates NKT cells and promotes systemic inflammation, increased tissue damage, and a dysregulated immune response resulting in increased morbidity and mortality in infected mice. Our data highlight the detrimental effects of NKT cell activation and identify a potential new target for therapies against pulmonary tularemia.
Vyšlo v časopise: Border Patrol Gone Awry: Lung NKT Cell Activation by Exacerbates Tularemia-Like Disease. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1004975
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004975Souhrn
NKT cells are innate-like lymphocytes with a demonstrated role in a wide range of diseases. Often cited for their ability to rapidly produce a variety of cytokines upon activation, they have long been appreciated for their ability to “jump-start” the immune system and to shape the quality of both the innate and adaptive response. This understanding of their function has been deduced from in vitro experiments or through the in vivo administration of highly potent, chemically synthesized lipid ligands, which may not necessarily reflect a physiologically relevant response as observed in a natural infection. Using a mouse model of pulmonary tularemia, we report that intranasal infection with the live vaccine strain of F. tularensis rapidly activates NKT cells and promotes systemic inflammation, increased tissue damage, and a dysregulated immune response resulting in increased morbidity and mortality in infected mice. Our data highlight the detrimental effects of NKT cell activation and identify a potential new target for therapies against pulmonary tularemia.
Zdroje
1. Scanlon ST, Thomas SY, Ferreira CM, Bai L, Krausz T, et al. (2011) Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J Exp Med 208 : 2113–2124. doi: 10.1084/jem.20110522 21930768
2. Paget C, Trottein F (2013) Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 6 : 1054–1067. doi: 10.1038/mi.2013.59 24104457
3. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, et al. (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1 - NKT cell population. Proc Natl Acad Sci U S A 105 : 11287–11292. doi: 10.1073/pnas.0801631105 18685112
4. Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13 : 101–117. doi: 10.1038/nri3369 23334244
5. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA (2013) Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 14 : 1146–1154. doi: 10.1038/ni.2731 24097110
6. Lynch L, Michelet X, Zhang S, Brennan PJ, Moseman A, et al. (2015) Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat Immunol 16 : 85–95. doi: 10.1038/ni.3047 25436972
7. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G (2014) IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 124 : 3725–3740. doi: 10.1172/JCI72308 25061873
8. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25 : 297–336. 17150027
9. Van Kaer L (2005) α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5 : 31–42. 15630427
10. Parekh VV, Wu L, Olivares-Villagomez D, Wilson KT, Van Kaer L (2013) Activated invariant NKT cells control central nervous system autoimmunity in a mechanism that involves myeloid-derived suppressor cells. J Immunol 190 : 1948–1960. doi: 10.4049/jimmunol.1201718 23345328
11. Leung B, Harris HW (2011) NKT cells: the culprits of sepsis? J Surg Res 167 : 87–95. doi: 10.1016/j.jss.2010.09.038 21035139
12. Munford RS (2006) Severe sepsis and septic shock: the role of gram-negative bacteremia. Annu Rev Pathol 1 : 467–496. 18039123
13. Van Kaer L, Parekh VV, Wu L (2013) Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol 34 : 50–58. doi: 10.1016/j.it.2012.08.009 23017731
14. Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5 : 405–417. 17487145
15. Hall JD, Woolard MD, Gunn BM, Craven RR, Taft-Benz S, et al. (2008) Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun 76 : 5843–5852. doi: 10.1128/IAI.01176-08 18852251
16. Law HT, Lin AE, Kim Y, Quach B, Nano FE, et al. (2011) Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep 1 : 192. doi: 10.1038/srep00192 22355707
17. Bossi P, Garin D, Guihot A, Gay F, Crance JM, et al. (2006) Bioterrorism: management of major biological agents. Cell Mol Life Sci 63 : 2196–2212. 16964582
18. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, et al. (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285 : 2763–2773. 11386933
19. Foley JE, Nieto NC (2010) Tularemia. Vet Microbiol 140 : 332–338. doi: 10.1016/j.vetmic.2009.07.017 19713053
20. Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15 : 631–646. 12364373
21. Sjostedt A (2007) Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci 1105 : 1–29. 17395726
22. Steiner DJ, Furuya Y, Metzger DW (2014) Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 7 : 239–251. doi: 10.2147/IDR.S53700 25258544
23. D'Elia RV, Laws TR, Carter A, Lukaszewski R, Clark GC (2013) Targeting the "Rising DAMP" during a Francisella tularensis infection. Antimicrob Agents Chemother. E-pub ahead of print.
24. Cowley SC (2009) Editorial: Proinflammatory cytokines in pneumonic tularemia: too much too late? J Leukoc Biol 86 : 469–470. doi: 10.1189/jlb.0309119 19720615
25. Crane DD, Griffin AJ, Wehrly TD, Bosio CM (2013) B1a Cells Enhance Susceptibility to Infection with Virulent Francisella tularensis via Modulation of NK/NKT Cell Responses. J Immunol 190 : 2756–2766. doi: 10.4049/jimmunol.1202697 23378429
26. Cowley SC, Elkins KL (2011) Immunity to francisella. Front Microbiol 2 : 26. doi: 10.3389/fmicb.2011.00026 21687418
27. Cui J, Shin T, Kawano T, Sato H, Kondo E, et al. (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278 : 1623–1626. 9374462
28. Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, et al. (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6 : 469–477. 9133426
29. Smiley ST, Kaplan MH, Grusby MJ (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275 : 977–979. 9020080
30. Chen Y-H, Chiu NM, Mandal M, Wang N, Wang C-R (1997) Impaired NK1+ T Cell Development and Early IL-4 Production in CD1-Deficient Mice. Immunity 6 : 459–467. 9133425
31. Conlan JW, Chen W, Bosio CM, Cowley SC, Elkins KL (2011) Infection of mice with Francisella as an immunological model. Curr Protoc Immunol Chapter 19: Unit 19 14.
32. Reed L, Muench H. (1938) A Simple Method of Estimating Fifty Per Cent Endpoints. American Journal of Hygiene 27 : 493–497.
33. Kurtz SL, Foreman O, Bosio CM, Anver MR, Elkins KL (2013) Interleukin-6 Is Essential for Primary Resistance to Francisella tularensis Live Vaccine Strain Infection. Infect Immun 81 : 585–597. doi: 10.1128/IAI.01249-12 23230288
34. Griffin AJ, Crane DD, Wehrly TD, Bosio CM (2015) Successful Protection against Tularemia in C57BL/6 Mice Is Correlated with Expansion of Francisella tularensis-Specific Effector T Cells. Clin Vaccine Immunol 22 : 119–128. doi: 10.1128/CVI.00648-14 25410207
35. Malik M, Bakshi CS, McCabe K, Catlett SV, Shah A, et al. (2007) Matrix metalloproteinase 9 activity enhances host susceptibility to pulmonary infection with type A and B strains of Francisella tularensis. J Immunol 178 : 1013–1020. 17202364
36. Bedel R, Matsuda JL, Brigl M, White J, Kappler J, et al. (2012) Lower TCR repertoire diversity in Traj18-deficient mice. Nat Immunol 13 : 705–706. doi: 10.1038/ni.2347 22814339
37. Vahl JC, Heger K, Knies N, Hein MY, Boon L, et al. (2013) NKT Cell-TCR Expression Activates Conventional T Cells in Vivo, but Is Largely Dispensable for Mature NKT Cell Biology. PLoS Biol 11: e1001589. doi: 10.1371/journal.pbio.1001589 23853545
38. Thomas SY, Scanlon ST, Griewank KG, Constantinides MG, Savage AK, et al. (2011) PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med 208 : 1179–1188. doi: 10.1084/jem.20102630 21624939
39. Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, et al. (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9 : 209–222. doi: 10.1038/nprot.2014.005 24385150
40. Holzapfel KL, Tyznik AJ, Kronenberg M, Hogquist KA (2014) Antigen-Dependent versus-Independent Activation of Invariant NKT Cells during Infection. J Immunol 192 : 5490–5498. doi: 10.4049/jimmunol.1400722 24813205
41. Slight SR, Monin L, Gopal R, Avery L, Davis M, et al. (2013) IL-10 Restrains IL-17 to Limit Lung Pathology Characteristics following Pulmonary Infection with Francisella tularensis Live Vaccine Strain. Am J Pathol 183 : 1397–1404. doi: 10.1016/j.ajpath.2013.07.008 24007881
42. Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ, et al. (2013) Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 340 : 1230–1234. doi: 10.1126/science.1233632 23618765
43. Verhoeven D, Teijaro JR, Farber DL (2009) Pulse-oximetry accurately predicts lung pathology and the immune response during influenza infection. Virology 390 : 151–156. doi: 10.1016/j.virol.2009.05.004 19493556
44. Ojeda SS, Wang ZJ, Mares CA, Chang TA, Li Q, et al. (2008) Rapid dissemination of Francisella tularensis and the effect of route of infection. BMC Microbiol 8 : 215. doi: 10.1186/1471-2180-8-215 19068128
45. Bar-Haim E, Gat O, Markel G, Cohen H, Shafferman A, et al. (2008) Interrelationship between dendritic cell trafficking and Francisella tularensis dissemination following airway infection. PLoS Pathog 4: e1000211. doi: 10.1371/journal.ppat.1000211 19023422
46. Kingry LC, Troyer RM, Marlenee NL, Bielefeldt-Ohmann H, Bowen RA, et al. (2011) Genetic identification of unique immunological responses in mice infected with virulent and attenuated Francisella tularensis. Microbes Infect 13 : 261–275. doi: 10.1016/j.micinf.2010.10.022 21070859
47. Sharma J, Li Q, Mishra BB, Pena C, Teale JM (2009) Lethal pulmonary infection with Francisella novicida is associated with severe sepsis. J Leukoc Biol 86 : 491–504. doi: 10.1189/jlb.1208728 19401387
48. Forestal CA, Malik M, Catlett SV, Savitt AG, Benach JL, et al. (2007) Francisella tularensis has a significant extracellular phase in infected mice. J Infect Dis 196 : 134–137. 17538893
49. Chiavolini D, Alroy J, King CA, Jorth P, Weir S, et al. (2008) Identification of immunologic and pathologic parameters of death versus survival in respiratory tularemia. Infect Immun 76 : 486–496. 18025095
50. Furuya Y, Kirimanjeswara GS, Roberts S, Metzger DW (2013) Increased susceptibility of IgA-deficient mice to pulmonary Francisella tularensis Live Vaccine Strain infection. Infect Immun 81 : 3434–3441. doi: 10.1128/IAI.00408-13 23836815
51. Foo SY, Phipps S (2010) Regulation of inducible BALT formation and contribution to immunity and pathology. Mucosal Immunol 3 : 537–544. doi: 10.1038/mi.2010.52 20811344
52. Melillo AA, Foreman O, Elkins KL (2013) IL-12Rbeta2 is critical for survival of primary Francisella tularensis LVS infection. J Leukoc Biol 93 : 657–667. doi: 10.1189/jlb.1012485 23440500
53. Notas G, Kisseleva T, Brenner D (2009) NK and NKT cells in liver injury and fibrosis. Clin Immunol 130 : 16–26. doi: 10.1016/j.clim.2008.08.008 18823822
54. Gao B, Radaeva S, Park O (2009) Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 86 : 513–528. doi: 10.1189/JLB.0309135 19542050
55. von Vietinghoff S, Ley K (2008) Homeostatic regulation of blood neutrophil counts. J Immunol 181 : 5183–5188. 18832668
56. Wu Z, Han M, Chen T, Yan W, Ning Q (2010) Acute liver failure: mechanisms of immune-mediated liver injury. Liver Int 30 : 782–794. doi: 10.1111/j.1478-3231.2010.02262.x 20492514
57. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, et al. (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163 : 4647–4650. 10528160
58. Bezbradica JS, Stanic AK, Matsuki N, Bour-Jordan H, Bluestone JA, et al. (2005) Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 174 : 4696–4705. 15814694
59. Kim JH, Oh SJ, Ahn S, Chung DH (2014) IFN-gamma-producing NKT cells exacerbate sepsis by enhancing C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils. Eur J Immunol 44 : 2025–2035. doi: 10.1002/eji.201343937 24723363
60. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, et al. (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76 : 16–32. doi: 10.1128/MMBR.05015-11 22390970
61. Chen W, Shen H, Webb A, KuoLee R, Conlan JW (2003) Tularemia in BALB/c and C57BL/6 mice vaccinated with Francisella tularensis LVS and challenged intradermally, or by aerosol with virulent isolates of the pathogen: protection varies depending on pathogen virulence, route of exposure, and host genetic background. Vaccine 21 : 3690–3700. 12922099
62. Fortier AH, Slayter MV, Ziemba R, Meltzer MS, Nacy CA (1991) Live vaccine strain of Francisella tularensis: infection and immunity in mice. Infect Immun 59 : 2922–2928. 1879918
63. Anthony LS, Skamene E, Kongshavn PA (1988) Influence of genetic background on host resistance to experimental murine tularemia. Infect Immun 56 : 2089–2093. 3397185
64. Lopez MC, Duckett NS, Baron SD, Metzger DW (2004) Early activation of NK cells after lung infection with the intracellular bacterium, Francisella tularensis LVS. Cell Immunol 232 : 75–85. 15922718
65. Anthony LS, Kongshavn PA (1987) Experimental murine tularemia caused by Francisella tularensis, live vaccine strain: a model of acquired cellular resistance. Microb Pathog 2 : 3–14. 3507552
66. Duckett NS, Olmos S, Durrant DM, Metzger DW (2005) Intranasal interleukin-12 treatment for protection against respiratory infection with the Francisella tularensis live vaccine strain. Infect Immun 73 : 2306–2311. 15784575
67. Kirimanjeswara GS, Golden JM, Bakshi CS, Metzger DW (2007) Prophylactic and therapeutic use of antibodies for protection against respiratory infection with Francisella tularensis. J Immunol 179 : 532–539. 17579074
68. Henry T, Kirimanjeswara GS, Ruby T, Jones JW, Peng K, et al. (2010) Type I IFN signaling constrains IL-17A/F secretion by gammadelta T cells during bacterial infections. J Immunol 184 : 3755–3767. doi: 10.4049/jimmunol.0902065 20176744
69. Rivas FV, Chervonsky AV, Medzhitov R (2014) ART and immunology. Trends Immunol 35 : 451. doi: 10.1016/j.it.2014.09.002 25261059
70. Forestal CA, Benach JL, Carbonara C, Italo JK, Lisinski TJ, et al. (2003) Francisella tularensis selectively induces proinflammatory changes in endothelial cells. J Immunol 171 : 2563–2570. 12928407
71. Moreland JG, Hook JS, Bailey G, Ulland T, Nauseef WM (2009) Francisella tularensis directly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype. Am J Physiol Lung Cell Mol Physiol 296: L1076–1084. doi: 10.1152/ajplung.90332.2008 19346432
72. Allen LA (2013) Neutrophils: potential therapeutic targets in tularemia? Front Cell Infect Microbiol 3 : 109. doi: 10.3389/fcimb.2013.00109 24409419
73. Mocsai A (2013) Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 210 : 1283–1299. doi: 10.1084/jem.20122220 23825232
74. De Santo C, Arscott R, Booth S, Karydis I, Jones M, et al. (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11 : 1039–1046. doi: 10.1038/ni.1942 20890286
75. Kotsianidis I, Silk JD, Spanoudakis E, Patterson S, Almeida A, et al. (2006) Regulation of hematopoiesis in vitro and in vivo by invariant NKT cells. Blood 107 : 3138–3144. 16373666
76. Chiavolini D, Rangel-Moreno J, Berg G, Christian K, Oliveira-Nascimento L, et al. (2010) Bronchus-associated lymphoid tissue (BALT) and survival in a vaccine mouse model of tularemia. PLoS One 5: e11156. doi: 10.1371/journal.pone.0011156 20585390
77. Wayne Conlan J, Shen H, Kuolee R, Zhao X, Chen W (2005) Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an alphabeta T cell - and interferon gamma - dependent mechanism. Vaccine 23 : 2477–2485. 15752834
78. Elliot JG, Jensen CM, Mutavdzic S, Lamb JP, Carroll NG, et al. (2004) Aggregations of lymphoid cells in the airways of nonsmokers, smokers, and subjects with asthma. Am J Respir Crit Care Med 169 : 712–718. 14711796
79. Bezbradica JS, Stanic AK, Joyce S (2006) Characterization and functional analysis of mouse invariant natural T (iNKT) cells. Curr Protoc Immunol Chapter 14: Unit 14 13.
80. Misharin AV, Morales-Nebreda L, Mutlu GM, Budinger GR, Perlman H (2013) Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49 : 503–510. doi: 10.1165/rcmb.2013-0086MA 23672262
81. Freedman DA (2006) On the so-called “Huber sandwich estimator” and “robust standard errors”.. American Statistician 60 : 299–302.
82. Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions.. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability: 221–233.
83. White H (1980) A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 48 : 817–838.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek Clearance of Pneumococcal Colonization in Infants Is Delayed through Altered Macrophage TraffickingČlánek An Model of Latency and Reactivation of Varicella Zoster Virus in Human Stem Cell-Derived NeuronsČlánek Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPsČlánek Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African TrypanosomiasisČlánek Peptidoglycan Branched Stem Peptides Contribute to Virulence by Inhibiting Pneumolysin ReleaseČlánek HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T CellsČlánek Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2015 Číslo 6- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Introducing “Research Matters”
- Exploring Host–Pathogen Interactions through Biological Control
- Analysis of Bottlenecks in Experimental Models of Infection
- Expected and Unexpected Features of the Newly Discovered Bat Influenza A-like Viruses
- Clearance of Pneumococcal Colonization in Infants Is Delayed through Altered Macrophage Trafficking
- Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice
- TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING
- Targeting Human Transmission Biology for Malaria Elimination
- Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in
- An Model of Latency and Reactivation of Varicella Zoster Virus in Human Stem Cell-Derived Neurons
- Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs
- Virulence Factors of Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells
- Peptide-MHC-I from Endogenous Antigen Outnumber Those from Exogenous Antigen, Irrespective of APC Phenotype or Activation
- Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis
- An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation
- The Role of Human Transportation Networks in Mediating the Genetic Structure of Seasonal Influenza in the United States
- Host Delivery of Favorite Meals for Intracellular Pathogens
- Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells
- Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence
- A Critical Role for CLSP2 in the Modulation of Antifungal Immune Response in Mosquitoes
- Twilight, a Novel Circadian-Regulated Gene, Integrates Phototropism with Nutrient and Redox Homeostasis during Fungal Development
- Surface-Associated Lipoproteins Link Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels
- Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells
- Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains
- Neuronal Subtype and Satellite Cell Tropism Are Determinants of Varicella-Zoster Virus Virulence in Human Dorsal Root Ganglia Xenografts
- Molecular Basis for the Selective Inhibition of Respiratory Syncytial Virus RNA Polymerase by 2'-Fluoro-4'-Chloromethyl-Cytidine Triphosphate
- Structure of the Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome
- Activated Brain Endothelial Cells Cross-Present Malaria Antigen
- Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in
- Peptidoglycan Branched Stem Peptides Contribute to Virulence by Inhibiting Pneumolysin Release
- A Macrophage Subversion Factor Is Shared by Intracellular and Extracellular Pathogens
- A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT
- Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor
- The Role of ExoS in Dissemination of during Pneumonia
- IRF-5-Mediated Inflammation Limits CD8 T Cell Expansion by Inducing HIF-1α and Impairing Dendritic Cell Functions during Infection
- Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection
- Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7
- HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells
- HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures
- The νSaα Specific Lipoprotein Like Cluster () of . USA300 Contributes to Immune Stimulation and Invasion in Human Cells
- RSV-Induced H3K4 Demethylase KDM5B Leads to Regulation of Dendritic Cell-Derived Innate Cytokines and Exacerbates Pathogenesis
- Leukocidin A/B (LukAB) Kills Human Monocytes via Host NLRP3 and ASC when Extracellular, but Not Intracellular
- Border Patrol Gone Awry: Lung NKT Cell Activation by Exacerbates Tularemia-Like Disease
- The Curious Road from Basic Pathogen Research to Clinical Translation
- From Cell and Organismal Biology to Drugs
- Adenovirus Tales: From the Cell Surface to the Nuclear Pore Complex
- A 21st Century Perspective of Poliovirus Replication
- Is Development of a Vaccine against Feasible?
- Waterborne Viruses: A Barrier to Safe Drinking Water
- Battling Phages: How Bacteria Defend against Viral Attack
- Archaea in and on the Human Body: Health Implications and Future Directions
- Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche
- Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability
- Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers
- The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly
- Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites
- The Proteome of the Isolated Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components
- NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia
- Successes and Challenges on the Road to Cure Hepatitis C
- BRCA1 Regulates IFI16 Mediated Nuclear Innate Sensing of Herpes Viral DNA and Subsequent Induction of the Innate Inflammasome and Interferon-β Responses
- A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers
- Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria
- Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration
- Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes
- EBV BART MicroRNAs Target Multiple Pro-apoptotic Cellular Genes to Promote Epithelial Cell Survival
- Single-Cell and Single-Cycle Analysis of HIV-1 Replication
- TRIM32 Senses and Restricts Influenza A Virus by Ubiquitination of PB1 Polymerase
- The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain
- Host Transcriptional Response to Influenza and Other Acute Respiratory Viral Infections – A Prospective Cohort Study
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells
- Battling Phages: How Bacteria Defend against Viral Attack
- A 21st Century Perspective of Poliovirus Replication
- Adenovirus Tales: From the Cell Surface to the Nuclear Pore Complex
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy