Host Delivery of Favorite Meals for Intracellular Pathogens
article has not abstract
Vyšlo v časopise:
Host Delivery of Favorite Meals for Intracellular Pathogens. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1004866
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004866
Souhrn
article has not abstract
Zdroje
1. Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol. 2011;19(7):341–8. doi: 10.1016/j.tim.2011.04.003 21600774
2. Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol. 2010;8(6):401–12. doi: 10.1038/nrmicro2351 20453875
3. Fuchs TM, Eisenreich W, Heesemann J, Goebel W. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS microbiology reviews. 2012;36(2):435–62. doi: 10.1111/j.1574-6976.2011.00301.x 22092350
4. Abu Kwaik Y, Bumann D. Microbial quest for food in vivo: 'Nutritional virulence' as an emerging paradigm. Cell Microbiol. 2013;15(6):882–90. doi: 10.1111/cmi.12138 23490329
5. Tsalikis J, Croitoru DO, Philpott DJ, Girardin SE. Nutrient sensing and metabolic stress pathways in innate immunity. Cell Microbiol. 2013;15(10):1632–41. doi: 10.1111/cmi.12165 23834352
6. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Molecular systems biology. 2011;7:535. doi: 10.1038/msb.2011.65 21988831
7. Kentner D, Martano G, Callon M, Chiquet P, Brodmann M, Burton O, et al. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc Natl Acad Sci U S A. 2014;111(27):9929–34. doi: 10.1073/pnas.1406694111 24958876
8. Kirk K, Lehane AM. Membrane transport in the malaria parasite and its host erythrocyte. The Biochemical journal. 2014;457(1):1–18. doi: 10.1042/BJ20131007 24325549
9. Drecktrah D, Knodler LA, Howe D, Steele-Mortimer O. Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. Traffic. 2007;8(3):212–25. 17233756
10. Krieger V, Liebl D, Zhang Y, Rajashekar R, Chlanda P, Giesker K, et al. Reorganization of the endosomal system in Salmonella-infected cells: the ultrastructure of Salmonella-induced tubular compartments. PLoS Pathog. 2014;10(9):e1004374. doi: 10.1371/journal.ppat.1004374 25254663
11. Bowden SD, Rowley G, Hinton JC, Thompson A. Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun. 2009;77(7):3117–26. doi: 10.1128/IAI.00093-09 19380470
12. Eisele NA, Ruby T, Jacobson A, Manzanillo PS, Cox JS, Lam L, et al. Salmonella require the fatty acid regulator PPARdelta for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe. 2013;14(2):171–82. doi: 10.1016/j.chom.2013.07.010 23954156
13. Xavier MN, Winter MG, Spees AM, den Hartigh AB, Nguyen K, Roux CM, et al. PPARgamma-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages. Cell Host Microbe. 2013;14(2):159–70. doi: 10.1016/j.chom.2013.07.009 23954155
14. Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, Farhan H, et al. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog. 2013;9(4):e1003301. doi: 10.1371/journal.ppat.1003301 23633950
15. Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy metabolism. International journal of hematology. 2012;95(5):457–63. doi: 10.1007/s12185-012-1069-y 22535382.
16. Galvan-Pena S, O'Neill LA. Metabolic reprograming in macrophage polarization. Frontiers in immunology. 2014;5:420. doi: 10.3389/fimmu.2014.00420 25228902
17. Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science. 2011;334(6062):1553–7. doi: 10.1126/science.1212868 22096100
18. Dieppedale J, Gesbert G, Ramond E, Chhuon C, Dubail I, Dupuis M, et al. Possible links between stress defense and the tricarboxylic acid (TCA) cycle in Francisella pathogenesis. Molecular & cellular proteomics: MCP. 2013;12(8):2278–92.
19. Weinstein I, Guss ML, Altenbern RA. Pyruvate oxidation by Pasteurella tularensis strains of graded virulence. J Bacteriol. 1962;83:1010–6. 14005758
20. Schell JC, Rutter J. The long and winding road to the mitochondrial pyruvate carrier. Cancer & metabolism. 2013;1(1):6.
21. Kreth J, Lengeler JW, Jahreis K. Characterization of pyruvate uptake in Escherichia coli K-12. PLoS One. 2013;8(6):e67125. doi: 10.1371/journal.pone.0067125 23818977
22. Omsland A, Hackstadt T, Heinzen RA. Bringing culture to the uncultured: Coxiella burnetii and lessons for obligate intracellular bacterial pathogens. PLoS Pathog. 2013;9(9):e1003540. doi: 10.1371/journal.ppat.1003540 24039571
23. Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci U S A. 2012;109:20800–7. doi: 10.1073/pnas.1218674109 23197835
24. Fonseca MV, Swanson MS. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila. Frontiers in cellular and infection microbiology. 2014;4:12. doi: 10.3389/fcimb.2014.00012 24575391
25. Gillmaier N, Götz A, Schulz A, Eisenreich W, Goebel W. Metabolic Responses of Primary and Transformed Cells to Intracellular Listeria monocytogenes. PLoS ONE. 2012;7(12):e52378. doi: 10.1371/journal.pone.0052378 23285016
26. Grubmuller S, Schauer K, Goebel W, Fuchs TM, Eisenreich W. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Frontiers in cellular and infection microbiology. 2014;4:156. doi: 10.3389/fcimb.2014.00156 25405102
27. Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A. 2008;105(11):4376–80. doi: 10.1073/pnas.0711159105 18334639
28. Smith PL, Chiossone DC, McCafferty GP. Characterization of LTC4 effects on rabbit ileal mucosa in vitro. Naunyn-Schmiedeberg's archives of pharmacology. 1990;341(1–2):94–100.
29. Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog. 2009;5(1):e1000284. doi: 10.1371/journal.ppat.1000284 19158962
30. Price CT, Richards AM, Von Dwingelo JE, Samara HA, Abu Kwaik Y. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution. Environ Microbiol. 2014;16(2):350–8. doi: 10.1111/1462-2920.12290 24112119
31. Abu Kwaik Y. Nutrition-based evolution of intracellular pathogens. Environ Microbiol Rep. 2015;7(1):2–3. doi: 10.1111/1758-2229.12236 25721587
32. Rask-Andersen M, Masuram S, Fredriksson R, Schioth HB. Solute carriers as drug targets: current use, clinical trials and prospective. Molecular aspects of medicine. 2013;34(2–3):702–10.
33. Das P, Lahiri A, Lahiri A, Sen M, Iyer N, Kapoor N, et al. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS One. 2010;5(12):e15466. doi: 10.1371/journal.pone.0015466 21151933
34. Wieland H, Ullrich S, Lang F, Neumeister B. Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol. 2005;55(5):1528–37. 15720558
35. Bruckert WM, Abu Kwaik Y. The complete and ubiquitinated proteome of the Legionella-containing vacuole within human macrophages. Journal of proteome research. 2015;14(1):236–248. doi: 10.1021/pr500765x 25369898
36. Price CT, Abu Kwaik Y. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages. PLoS One. 2014; 9(12): e114914. doi: 10.1371/journal.pone.0114914 25485627
37. Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Frontiers in cellular and infection microbiology. 2013;3:24. doi: 10.3389/fcimb.2013.00024 23847769
38. Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. Journal of cellular biochemistry. 2015;116(5):696–703. doi: 10.1002/jcb.25074 25546605
39. Vyas P. Targeting HIF function: the debate continues. Blood. 2014;124(24):3510–1. doi: 10.1182/blood-2014-10-605055 25477482
40. Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nature reviews Immunology. 2009;9(9):609–17. doi: 10.1038/nri2607 19704417
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells
- A 21st Century Perspective of Poliovirus Replication
- Adenovirus Tales: From the Cell Surface to the Nuclear Pore Complex
- Battling Phages: How Bacteria Defend against Viral Attack