Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in
Blastomyces dermatitidis belongs to a group of human pathogenic fungi that convert between two forms, mold and yeast, in response to temperature. Growth as yeast (37°C) in tissue facilitates immune evasion, whereas growth as mold (22°C) promotes environmental survival, sexual reproduction, and generation of transmissible spores. Despite the importance of dimorphism, how fungi regulate temperature adaptation is poorly understood. We identified SREB, a transcription factor that regulates disparate processes including dimorphism. SREB null mutants, which lack SREB, fail to fully complete the conversion to mold at 22°C. The goal of our research was to characterize how SREB regulates transcription during the switch to mold. Gene expression microarray along with chromatin binding and biochemical analyses indicated that SREB affected several processes including iron homeostasis, lipid biosynthesis, and lipid droplet formation. In vivo, SREB directly bound and regulated genes involved with iron uptake, lipid biosynthesis, and transcription. Functional analysis suggested that lipid metabolism may influence filamentous growth at 22°C. In addition, SREB interacted with another transcription factor, HAPX.
Vyšlo v časopise:
Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1004959
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004959
Souhrn
Blastomyces dermatitidis belongs to a group of human pathogenic fungi that convert between two forms, mold and yeast, in response to temperature. Growth as yeast (37°C) in tissue facilitates immune evasion, whereas growth as mold (22°C) promotes environmental survival, sexual reproduction, and generation of transmissible spores. Despite the importance of dimorphism, how fungi regulate temperature adaptation is poorly understood. We identified SREB, a transcription factor that regulates disparate processes including dimorphism. SREB null mutants, which lack SREB, fail to fully complete the conversion to mold at 22°C. The goal of our research was to characterize how SREB regulates transcription during the switch to mold. Gene expression microarray along with chromatin binding and biochemical analyses indicated that SREB affected several processes including iron homeostasis, lipid biosynthesis, and lipid droplet formation. In vivo, SREB directly bound and regulated genes involved with iron uptake, lipid biosynthesis, and transcription. Functional analysis suggested that lipid metabolism may influence filamentous growth at 22°C. In addition, SREB interacted with another transcription factor, HAPX.
Zdroje
1. Gauthier GM & Klein BS. Insights into fungal morphogenesis and immune evasion. Microbe. 2008; 3: 416–423. 20628478
2. Nemecek JC, Wüthrich M, Klein BS. Global control of dimorphism and virulence in fungi. Science. 2006;312: 583–588. 16645097
3. Finkel-Jimenez B, Wüthrich M, Klein BS. BAD1, an essential virulence factor of Blastomyces dermatitidis, suppresses host TNF-alpha production through TGF-beta-dependent and–independent mechanisms. J Immunol. 2002;168: 5746–5755. 12023375
4. Chapman SW, Dismukes WE, Proia LA, Bradsher RW, Pappas PG, et al. Clinical practice guidelines for the management of blastomycosis: 2008 update by the Infectious Diseases Society of America. Clin Infect Dis 2008;46: 1801–1812. doi: 10.1086/588300 18462107
5. Gauthier GM, Safdar N, Klein BS, Andes DR. Blastomycosis in solid organ transplant recipients. Transpl Infect Dis. 2007;9: 310–317. 17428278
6. Fisher MC, Koenig GL, White TL, San-Blas G, Negroni R, et al. Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc Natl Acad Sci USA. 2001;98: 4558–4562. 11287648
7. Nguyen VQ and Sil A. Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 2008;105: 4880–4885. doi: 10.1073/pnas.0710448105 18339808
8. Mahvi TA. A comparative study of the yeast and mycelial phases of Histoplasma capsulatum. I. pathways of carbohydrate dissimilation. J Infect Dis. 1965;115: 226–232. 14331704
9. Kanetsuna F, and Carbonell LM. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis. J Bacteriol. 1966;92: 1315–1320. 5924267
10. Arraes EF, Benoliel B, Burtet RT, Costa PL, Galdino AS, et al. General metabolism of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. Gen Mol Res. 2005;4: 290–308.
11. Domer JE, and Hamilton JG. The readily extracted lipids of Histoplasma capsulatum and Blastomyces dermatitidis. Biochim Biophys Acta. 1971; 231: 465–478. 5089693
12. Toledo MS, Levery SB, Suzuki E, Straus AH, Takahashi HK. Characterization of cerebrosides from the thermally dimorphic mycopathogen Histoplasma capsulatum: expression of 2-hydroxy fatty N-acyl (E)-Δ3-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology. 2001;11: 113–124. 11287398
13. Kanetsuna F, and Carbonell LM. Cell wall composition of the yeast-like and mycelial forms of Blastomyces dermatitidis. J Bacteriol 1971;106: 946–948. 5557599
14. Webster RH and Sil A. Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci USA. 2008;105: 14573–14578. doi: 10.1073/pnas.0806221105 18791067
15. Beyhan S, Gutierrez M, Voorhies M, Sil A. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 2013;11:31001614.
16. Bugeja HE, Hynes MJ, Andrianopoulos A. HgrA is necessary and sufficient to drive hyphal growth in the dimorphic pathogen Penicillium marneffei. Mol Microbiol. 2013;88: 998–1014. doi: 10.1111/mmi.12239 23656348
17. Todd RB, Greenhalgh JR, Hynes MJ, Andrianopoulos A. TupA, the Penicillium marneffei Tup1p homolog, represses both yeast and spore development. Mol Microbiol. 2003;48: 85–94. 12657047
18. Gauthier GM, Sullivan TD, Gallardo SS, Brandhorst TT, Vanden Wymelenberg AJ, et al. SREB, a GATA transcription factor that directs disparate fates in Blastomyces dermatitidis including morphogenesis and siderophore biosynthesis. PLoS Pathog. 2010;6: e1000846. doi: 10.1371/journal.ppat.1000846 20368971
19. Hwang LH, Seth E, Gilmore SA, Sil A. SRE1 regulates iron-dependent and–independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryot Cell. 2012;11: 16–25. doi: 10.1128/EC.05274-11 22117028
20. Hilty J, Smulian AG, Newman SL. The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages, and virulence in a murine model of histoplasmosis. Mol Microbiol. 2008;70: 127–139. doi: 10.1111/j.1365-2958.2008.06395.x 18699866
21. Gilmore SA, Naseem S, Konopka JB, Sil A. N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. PLoS Genetics. 2013;9: e1003799. doi: 10.1371/journal.pgen.1003799 24068964
22. Chandarlapaty S and Errede B. Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol. 1998;18: 2884–2891. 9566907
23. Long RM, Singer RH, Meng X, Gonzalez I, Nasmyth K, Jansen RP. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science. 1997;277: 383–387. 9219698
24. Jung WH, Sham A, White R, Kronstad JW. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 2006; 4: e410. 17121456
25. Jung WH and Kronstad JW. The iron-responsive, GATA-type transcription factor cir1 influences mating in Cryptococcus neoformans. Mol Cells. 2011;31: 73–7. doi: 10.1007/s10059-011-0011-0 21120626
26. He Q, Cheng P, Yang Y, Wang L, Garnder KH, Lui Y. (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297: 840–843. 12098705
27. Todd RB, Fraser JA, Wong KH, Davis MA, Hynes MJ. Nuclear accumulation of GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot Cell. 2005;4: 1646–53. 16215172
28. Haas H, Zadra I, Stoffler G, Angermayr K. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem. 1999;274: 4613–9. 9988696
29. Chao LY, Marletta MA, Rine J. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum. Biochemistry. 2008;47: 7274–7283. doi: 10.1021/bi800066s 18549241
30. Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 2004;3: Article 3.
31. Kendziorski CM, Newton MA, Lan H, Gould MN. On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med. 2003;22: 3899–3914. 14673946
32. Kumme J, Dietz M, Wagner C, Schuller HJ. Dimerization of yeast transcription factors Ino2 and Ino4 is regulated by precursors of phospholipid biosynthesis mediated by Opi1 repressor. Curr Genet. 2008;54: 35–45. doi: 10.1007/s00294-008-0197-7 18542964
33. Howard DH. Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev. 1999;23:394–404.
34. Giles SS and Czuprynski CJ. Extracellular calcium and magnesium, but not iron, are needed for optimal growth of Blastomyces dermatitidis yeast form cells in vitro. Clin Diagn Lab Immunol. 2004;11: 426–429. 15013999
35. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996;271: 1552–1557. 8599111
36. Jung WH, Sham A, Lian T, Singh A, Kosman DJ, Kronstad JW. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog. 2008; 4: e45. doi: 10.1371/journal.ppat.0040045 18282105
37. Knight SA, Vilaire G, Lesulsse E, Dancis A. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun. 2005;73: 5482–5492. 16113264
38. Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med. 2004;200: 1213–1219. 15504822
39. Labbé S, Khan MG, Jacques JF. Iron uptake and regulation in Schizosaccharomyces pombe. Curr Opin Microbiol. 2013;16: 669–676. doi: 10.1016/j.mib.2013.07.007 23916750
40. Zarnowski R, Cooper KG, Brunold LS, Calaycay J, Woods JP. Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant. Mol Microbiol 2008;70: 352–368. doi: 10.1111/j.1365-2958.2008.06410.x 18761625
41. Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, et al. Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem. 2008;283: 17065–17074. doi: 10.1074/jbc.M800401200 18430725
42. Kohlwein SD, Veenhuis M, van der Klei IJ. Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of–fatstore ‘em up or burn ‘em down. Genetics. 2013;193: 1–50. doi: 10.1534/genetics.112.143362 23275493
43. Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H et al. The emergence of lipid droplets in yeast: current status and experimental approaches. Curr Genet. 2013;59: 231–242. doi: 10.1007/s00294-013-0407-9 24057105
44. Manickam E, Sinclair AJ, Cameron-Smith D. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes. Lipids Health Dis. 2010;9: 57. doi: 10.1186/1476-511X-9-57 20525346
45. Natter K and Kohlwein SD. Yeast and cancer cells–common principles in lipid metabolism. Biochem Biophys Acta. 2013;1831: 314–326. doi: 10.1016/j.bbalip.2012.09.003 22989772
46. Komachi K, Johnson AD. Residues in the WD repeats of Tup1 required for interaction with alpha2. Mol Cell Biol. 1997;17: 6023–6028. 9315661
47. DeSilva H, Lee K, Osley MA. Functional dissection of yeast Hir1p, a WD repeat-containing transcriptional corepressor. Genetics. 1998;148: 657–667. 9504914
48. Hortschansky P, Eisendle M, Al-Abadallah Q, Schmidt AD, Bergmann S et al. Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J. 2007;26: 3157–3168. 17568774
49. Schrettl M, Beckmann N., Varga J., Heinekamp T, Jacobsen ID et al. HapX-mediated adaptation to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 2010;6: e1001124. doi: 10.1371/journal.ppat.1001124 20941352
50. Chen C, Kalyan P, French SD, Tuch BB, Noble SM. An iron homeostasis regulatory circuit in Candida albicans commensalism and pathogenesis. Cell Host Microbe 2011;10:118–135. doi: 10.1016/j.chom.2011.07.005 21843869
51. Krajaejun T, Gauthier GM, Rappleye CA, Sullivan TD, Klein BS. Development and application of a green fluorescent protein sentinel system for identification of RNA interference in Blastomyces dermatitidis illuminates the role of septin in morphogenesis and sporulation. Eukaryot Cell. 2007;6: 1299–1309. 17496124
52. Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol. 2008;70: 27–43. doi: 10.1111/j.1365-2958.2008.06376.x 18721228
53. Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, et al. Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol. 2004;53: 1451–1469. 15387822
54. Roy I and Landau JW. Composition of the alkali resistant cell wall material of dimorphic Blastomyces dermatitidis. Sabouraudia. 1972;10: 107–112. 4557874
55. Kobayashi GS and Guiliacci PL. Cell wall studies of Histoplasma capsulatum. Sabouraudia. 1967;5: 180–188. 6036225
56. Blatzer M, Schrettl M., Sarg B, Lindner HH, Pfaller K, et al. SidL, an Aspergillus fumigatus transacetylase involved in the biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl Environ Microbiol. 2011;77: 4959–4966. doi: 10.1128/AEM.00182-11 21622789
57. Labbé S, Pelletier B, Mercier A. Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals. 2007;20: 523–537. 17211681
58. Zarnowski R and Woods JP. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi. Microbiology 2005;151: 2244–2240.
59. Di Salvo AF and Denton JF. Lipid content of four strains of Blastomyces dermatitidis of different mouse virulence. J. Bacteriol. 1963;85: 927–931. 14044964
60. Kanetsuna F, Carbonell LM, Moreno RE, Rodriguez J. Cell wall composition of the yeast and mycelial forms of Paracoccidioides brasiliensis. J. Bacteriol. 1969;97: 1036–1041. 5776517
61. Wilfling F, Wang J, Haas JT, Krahmer N, Gould TJ et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from ER to lipid droplets. Dev Cell. 2013;24: 384–399. doi: 10.1016/j.devcel.2013.01.013 23415954
62. Oelkers P, Cromley D, Padamsee M, Billheimer JT. The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 2002;277: 8877–8881. 11751875
63. Sorger D, Athenstaedt K, Hrastnik H, Daum G. A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem. 2004;279: 31190–31196. 15155725
64. Wolinski H, Kolb D, Hermann S, Koning RI, Kohlwein SD. A role for seipin in lipid droplet dynamics and inheritance in yeast. J Cell Sci. 2011;124: 3894–3904. doi: 10.1242/jcs.091454 22100922
65. Maresca B, and Kobayashi G. Changes in membrane fluidity modulate heat shock gene expression and produced attenuated strains in the dimorphic fungus Histoplasma capsulatum. Arch Med Res. 1993;24: 247–249. 8298273
66. Carratù L, Franceschelli S, Pardini CL, et al. Membrane lipid perturbation modified the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA. 1996;93: 3870–3875. 8632982
67. Chen C and Noble SM. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host. PLoS Pathog. 2012;8: e1002956. doi: 10.1371/journal.ppat.1002956 23133381
68. Singh RP, Prasad HK, Sinha I, Agarwal N, Ntarajan K. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem. 2011;286: 25154–25170. doi: 10.1074/jbc.M111.233569 21592964
69. Brandhorst TT, Wüthrich M, Warner T, Klein B. Targeted gene disruption reveals an adhesin indispensable for pathogenicity of Blastomyces dermatitidis. J Exp Med 1999;189: 1207–1216. 10209038
70. Wüthrich M, Filutowicz HI, Warner T, Klein BS. Requisite elements in vaccine immunity to Blastomyces dermatitidis: plasticity uncovers vaccine potential in immune-deficient hosts. J Immunol. 2002;169: 6969–6976. 12471131
71. Harvey RP, Schmid ES, Carrington CC, Stevens DA. Mouse model of pulmonary blastomycosis: utility, simplicity, and quantitative parameters. Am Rev Respir Dis. 1978;117: 695–703 646221
72. Worsham PL and Goldman WE. Quantitative plating of Histoplasma capsulatum without addition of conditioned medium or siderophores. J Med Vet Mycol. 1988;26: 137–143. 3171821
73. Sullivan TD, Rooney PJ, Klein BS. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell. 2002;1: 895–905. 12477790
74. Marty AJ and Gauthier GM. Blastomyces dermatitidis septins CDC3, CDC10, and CDC12 impact the morphology of yeast and hyphae, but are not required for the phase transition. Med Mycol. 2013;51: 93–102. doi: 10.3109/13693786.2012.699685 22783804
75. Jbel M., Mercier A, Pelletier B, Beaudoin J, Labbé S. Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region. Eukaryot Cell. 2009;8: 649–664. doi: 10.1128/EC.00001-09 19252122
76. Sambrook J and Russell DW. Molecular cloning: a laboratory manual, 3rd Ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001. pp. 7.4–7.8.
77. Storey JD and Tibshirani R. Statistical significance for genome-wide studies. Proc Natl Acad Sci USA. 2003;100: 9440–9445. 12883005
78. Zdobnov EM and Apweiler R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17: 847–848. 11590104
79. Zhang B. and Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4: Article 17.
80. Langfelder P., Zhang B., Horvath S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008;24: 719–720. 18024473
81. Hassett R and Kosman DJ. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem. 1995;270:128–134. 7814363
82. Pelletier B, Beaudoin J, Mukai Y, Labbé S. FEP1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem. 2002;277: 22950–22958. 11956219
83. Zarnowski R, Miyazaki M, Dobrzyn A, Ntambi JM, Woods JP. Typing of Histoplasma capsulatum strains by fatty acid profile analysis. J Med Microbiol. 2007;56: 788–797. 17510264
84. Zarnowski R., Jaromin A., Certik M., Czabany T., Fontaine J., Jakubik T., et al. The oil of Adenanthera pavonina L. seeds and its emulsions. Z Naturforsch C. 2004;59: 321–326. 18998394
85. Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum HA. Chromatin immunoprecipitation by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protocol. 2008;3: 698–709.
86. Langmead B., Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10: R25. doi: 10.1186/gb-2009-10-3-r25 19261174
87. Kuan P, Chung D, Pan G, Thomson JA, Stewart R, Keles S. A statistical framework for the analysis of ChIP-seq data. J Am Stat Assoc 2011;106: 891–903.
88. Sun G, Chung D, Liang K, Keles S. Statistical analysis of ChIP-seq data with MOSAiCS. Methods Mol Biol 2013;1038: 193–212. doi: 10.1007/978-1-62703-514-9_12 23872977
89. Landt SG, Marinov GK, Kundaje A et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 2012; 22: 1813–1831. doi: 10.1101/gr.136184.111 22955991
90. Livak KF, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods. 2001;25: 402–408. 11846609
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells
- A 21st Century Perspective of Poliovirus Replication
- Battling Phages: How Bacteria Defend against Viral Attack
- Adenovirus Tales: From the Cell Surface to the Nuclear Pore Complex