NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia
African trypanosomes are the causative agents of Human and Animal African Trypanosomosis, impairing economic development and causing death throughout the African continent. Anemia and inflammation are hallmark features of virtually every type of trypanosome infection. During experimental murine trypanosomosis, early inflammation causes enhanced red blood cell phagocytosis by cells of the myeloid phagocytic system, leading to severe anemia within 48 hours past peak parasitemia. Here, we identify the pro-inflammatory cytokine IFNγ as the main driver of the early inflammatory reaction and enhanced red blood cell phagocytosis. This IFNγ is derived consecutively by NK, NKT and CD8+ T cells, hence these cells all play a crucial role in the induction of inflammation and anemia.
Vyšlo v časopise:
NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1004964
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004964
Souhrn
African trypanosomes are the causative agents of Human and Animal African Trypanosomosis, impairing economic development and causing death throughout the African continent. Anemia and inflammation are hallmark features of virtually every type of trypanosome infection. During experimental murine trypanosomosis, early inflammation causes enhanced red blood cell phagocytosis by cells of the myeloid phagocytic system, leading to severe anemia within 48 hours past peak parasitemia. Here, we identify the pro-inflammatory cytokine IFNγ as the main driver of the early inflammatory reaction and enhanced red blood cell phagocytosis. This IFNγ is derived consecutively by NK, NKT and CD8+ T cells, hence these cells all play a crucial role in the induction of inflammation and anemia.
Zdroje
1. Drennan MB, Stijlemans B, Van Den J, Quesniaux VJ, Barkhuizen M, et al. (2005) The Induction of a Type 1 Immune Response following a Trypanosoma vbrucei infection is MyD88 dependent. J Immunol 175: 2501–2509. 16081822
2. Magez S, Stijlemans B, Baral T, De Baetselier P (2002) VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes Infect 4: 999–1006. 12106794
3. Mansfield JM, Paulnock DM (2005) Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol 27: 361–371. 16179030
4. Leppert BJ, Mansfield JM, Paulnock DM (2007) The soluble variant surface glycoprotein of African Trypanosomes is recognized by a macrophage scavenger receptor and induces IkB alpha degradation independently of TRAF6-mediated TLR signaling. J Immunol 179: 548–556. 17579076
5. Shoda LKM, Kegerreis KA, Suarez CE, Roditi I, Corral RS, et al. (2001) T. brucei Is Mitogenic for B Lymphocytes and Stimulates Macrophage Expression of Interleukin-12, Tumor Necrosis Factor Alpha, and Nitric Oxide. Infect Immun 69: 2162–2171. doi: 10.1128/IAI.69.4.2162 11254571
6. Magez S, Stijlemans B, Radwanska M, Ferguson MAJ, De Baetselier P, et al. (1998) The Glycosyl-Inositol-Phosphate and Dimyrestoylglycerol Moieties of the Glycosylphosphatidylinosotol Anchor of the Trypanosome Variant-Specific Surface Glycoproetin Are Distinct Macrophage-Activating Factors. J Immunol 160: 1949–1956. 9469458
7. Paulnock DM, Coller SP (2001) Analysis of macrophage activation in African trypanosomiasis Abstract : African trypanosomes cause a fatal dis- ease of man and animals that is characterized by changes in the lymphoid tissues of infected hosts, state of macrophages. Macrophage activati. 69: 685–690. 11358974
8. Hertz CJ, Filutowicz H, Mansfield JM (1998) Resistance to the African trypanosomes is IFN-gamma dependent. J Immunol 161: 6775–6783. 9862708
9. Schleifer KW, Filutowicz H, Schopf R, Mansfield M (1993) Characterization of T helper Cell Responses to the Trypanosome Variant Surface Glycoprotein. J Immunol 150: 2910–2919. 8454863
10. Mansfield JM (1994) T-cell responses to the trypanosome variant surface glycoprotein: a new paradigm? Parasitol Today 10: 267–270. 15275443
11. Schopf LR, Filutowicz H, Bi X, Mansfield JM (1998) Interleukin-4-Dependent Immunoglobulin G1 Isotype Switch in the Presence of a Polarized Antigen-Specific Th1-Cell Response to the Trypanosome Variant Surface Glycoprotein. Infect Immun 66: 451–461. 9453595
12. Magez S, Radwanska M, Beschin a, Sekikawa K, De Baetselier P (1999) Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67: 3128–3132. 10338530
13. Stijlemans B, Baral TN, Guilliams M, Brys L, Korf J, et al. (2007) A Glycosylphosphatidylinositol-Based Treatment Alleviates Trypanosomiasis-Associated Immunopathology. J Immunol 179: 4003–4014. 17785839
14. Stijlemans B, Leng L, Brys L, Sparkes A, Vansintjan L, et al. (2014) MIF contributes to Trypanosoma brucei associated immunopathogenicity development. PLoS Pathog 10: e1004414. doi: 10.1371/journal.ppat.1004414 25255103
15. Stijlemans B, Vankrunkelsven A, Brys L, Magez S, De Baetselier P (2008) Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology 213: 823–835. doi: 10.1016/j.imbio.2008.07.023 18926297
16. Cnops J, Magez S, De Trez C (2014) Escape mechanisms of African trypanosomes: why trypanosomosis is keeping us awake. Parasitology: 1–11. doi: 10.1017/S0031182013001224 25076418
17. Magez S, Truyens C, Merimi M, Radwanska M, Stijlemans B, et al. (2004) P75 tumor necrosis factor-receptor shedding occurs as a protective host response during African trypanosomiasis. J Infect Dis 189: 527–539. 14745712
18. Magez S, Schwegmann A, Atkinson R, Claes F, Drennan M, et al. (2008) The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog 4: e1000122. doi: 10.1371/journal.ppat.1000122 18688274
19. Stijlemans B, Cnops J, Naniima P, Vaast A, Bockstael V, et al. (2015) Development of a pHrodo TM-based assay for the assessment of in vitro and in vivo erythrophagocytosis during experimental trypanosomosis. PLoS Negl Trop Dis in press: 1–32.
20. Coller SP, Mansfield JM, Paulnock DM (2003) Glycosylinositolphosphate Soluble Variant Surface Glycoprotein Inhibits IFN--Induced Nitric Oxide Production Via Reduction in STAT1 Phosphorylation in African Trypanosomiasis. J Immunol 171: 1466–1472. 12874239
21. Namangala B, Noël W, De Baetselier P, Brys L, Beschin a (2001) Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183: 1794–1800. 11372033
22. Olsson T, Bakhiet M, Hojeberg B, Ljungdahl A, Edlund C, et al. (1993) CD8 Is Critically Involved in Lymphocyte Activation by a T. brucei brucei-Released Molecule. Cell 72: 715–727. 8453666
23. Masocha W, Rottenberg ME, Kristensson K (2007) Migration of African trypanosomes across the blood-brain barrier. Physiol Behav 92: 110–114. 17582444
24. Rottenberg ME, Bakhiet M, Olsson T, Kristensson K, Mak T, et al. (1993) Differential susceptibilities of mice genomically deleted of CD4 and CD8 to infections with Trypanosoma cruzi or Trypanosoma brucei. Infect Immun 61: 5129–5133. 8225589
25. Zoller EE, Lykens JE, Terrell CE, Aliberti J, Filipovich AH, et al. (2011) Hemophagocytosis causes a consumptive anemia of inflammation. J Exp Med 208: 1203–1214. doi: 10.1084/jem.20102538 21624938
26. Ellis TN, Beaman BL (2004) Interferon-γ activation of polymorphonuclear neutrophil function. Immunology 112: 2–12. 15096178
27. Ciucci T, Bosselut R (2014) A ROG(ue) in charge of the (natural) killers. Nat Immunol 15: 531–532. doi: 10.1038/ni.2895 24840990
28. Fogel L a, Sun MM, Geurs TL, Carayannopoulos LN, French AR (2013) Markers of nonselective and specific NK cell activation. J Immunol 190: 6269–6276. doi: 10.4049/jimmunol.1202533 23656738
29. Brigl M, Tatituri RV V, Watts GFM, Bhowruth V, Leadbetter E a, et al. (2011) Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 208: 1163–1177. doi: 10.1084/jem.20102555 21555485
30. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei X-q., et al. (2002) Coordinated and Distinct Roles for IFN-, IL-12, and IL-15 Regulation of NK Cell Responses to Viral Infection. J Immunol 169: 4279–4287. 12370359
31. Balato A, Unutmaz D, Gaspari A a (2009) Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol 129: 1628–1642. doi: 10.1038/jid.2009.30 19262602
32. Van Dommelen SLH, Tabarias H a., Smyth MJ, Degli-Esposti M a. (2003) Activation of Natural Killer (NK) T Cells during Murine Cytomegalovirus Infection Enhances the Antiviral Response Mediated by NK Cells. J Virol 77: 1877–1884. 12525622
33. Bezman N a, Kim CC, Sun JC, Min-Oo G, Hendricks DW, et al. (2012) Molecular definition of the identity and activation of natural killer cells. Nat Immunol 13: 1000–1009. doi: 10.1038/ni.2395 22902830
34. Godfrey DI, Rossjohn J (2011) New ways to turn on NKT cells. J Exp Med 208: 1121–1125. doi: 10.1084/jem.20110983 21646400
35. Schofield L (1999) CD1d-Restricted Immunoglobulin G Formation to GPI-Anchored Antigens Mediated by NKT Cells. Science (80-) 283: 225–229.
36. Reinitz DM, Mansfield JM (1990) T-cell-independent and T-cell-dependent B-cell responses to exposed variant surface glycoprotein epitopes in trypanosome-infected mice. Infect Immun 58: 2337–2342. 1694824
37. Radwanska M, Magez S, Dumont N, Pays A, Nolan D, et al. (2000) Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol 22: 639–650. 11123756
38. Magez S, Schwegmann A, Atkinson R, Claes F, Drennan M, et al. (2008) The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog 4: e1000122. doi: 10.1371/journal.ppat.1000122 18688274
39. Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D, et al. (2010) Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog 6: e1001045. doi: 10.1371/journal.ppat.1001045 20714353
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 6
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells
- A 21st Century Perspective of Poliovirus Replication
- Battling Phages: How Bacteria Defend against Viral Attack
- Adenovirus Tales: From the Cell Surface to the Nuclear Pore Complex