#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs


The filoviruses have caused multiple outbreaks among humans this decade, including a 90% lethal outbreak of Marburg virus in Angola and a significant, sustained outbreak of Ebola virus in West Africa. The viral surface glycoprotein (GP), which enables filoviruses to infect host cells, is the primary target of the immune system. Antibodies that target filovirus GP have been shown to provide life-saving therapy in nonhuman primates. However, the majority of known antibodies are only reactive against Ebola virus and not other emerging filoviruses. In this study, we present ten antibodies against Marburg virus, elicited by immunization of mice using engineered forms of its GP. Surprisingly, two antibodies exhibit some cross-reactivity to ebolaviruses (including species Ebola, Sudan, Bundibugyo, Reston). Other antibodies in this panel recognize a novel “wing” feature on a portion of GP that is unique to Marburg and does not exist in ebolaviruses, and protect 90%-100% of mice from lethal exposure. These antibodies, and their structural and functional analysis presented here, illuminate directions forward for therapeutics against Marburg virus.


Vyšlo v časopise: Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1005016
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005016

Souhrn

The filoviruses have caused multiple outbreaks among humans this decade, including a 90% lethal outbreak of Marburg virus in Angola and a significant, sustained outbreak of Ebola virus in West Africa. The viral surface glycoprotein (GP), which enables filoviruses to infect host cells, is the primary target of the immune system. Antibodies that target filovirus GP have been shown to provide life-saving therapy in nonhuman primates. However, the majority of known antibodies are only reactive against Ebola virus and not other emerging filoviruses. In this study, we present ten antibodies against Marburg virus, elicited by immunization of mice using engineered forms of its GP. Surprisingly, two antibodies exhibit some cross-reactivity to ebolaviruses (including species Ebola, Sudan, Bundibugyo, Reston). Other antibodies in this panel recognize a novel “wing” feature on a portion of GP that is unique to Marburg and does not exist in ebolaviruses, and protect 90%-100% of mice from lethal exposure. These antibodies, and their structural and functional analysis presented here, illuminate directions forward for therapeutics against Marburg virus.


Zdroje

1. Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, et al. (2010) Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 155: 2083–2103. doi: 10.1007/s00705-010-0814-x 21046175

2. Peterson AT, Holder MT (2012) Phylogenetic assessment of filoviruses: how many lineages of Marburg virus? Ecol Evol 2: 1826–1833. doi: 10.1002/ece3.297 22957185

3. Siegert R, Shu HL, Slenczka W, Peters D, Muller G (1967) On the etiology of an unknown human infection originating from monkeys. Dtsch Med Wochenschr 92: 2341–2343. 4294540

4. Smith CEG, Simpson DIH, Bowen ETW (1967) Fatal human disease from vervet monkeys. Lancet 2: 1119–1121. 4168558

5. Kissling RE, Robinson RQ, Murphy FA, Whitfield SG (1968) Agent of disease contracted from green monkeys. Science 160: 888–890. 4296724

6. Brauburger K, Hume AJ, Muhlberger E, Olejnik J (2012) Forty-five years of Marburg virus research. Viruses 4: 1878–1927. doi: 10.3390/v4101878 23202446

7. Timen A, Koopmans MP, Vossen AC, van Doornum GJ, Gunther S, et al. (2009) Response to imported case of Marburg hemorrhagic fever, the Netherland. Emerg Infect Dis 15: 1171–1175. doi: 10.3201/eid1508.090015 19751577

8. (2009) Imported case of Marburg hemorrhagic fever—Colorado, 2008. MMWR Morb Mortal Wkly Rep 58: 1377–1381. 20019654

9. Gear JS, Cassel GA, Gear AJ, Trappler B, Clausen L, et al. (1975) Outbreak of Marburg virus disease in Johannesburg. Br Med J 4: 489–493. 811315

10. Geisbert TW, Daddario-DiCaprio KM, Geisbert JB, Young HA, Formenty P, et al. (2007) Marburg virus Angola infection of rhesus macaques: pathogenesis and treatment with recombinant nematode anticoagulant protein c2. Journal of Infectious Diseases 196 Suppl 2: S372–381. 17940973

11. Towner JS, Khristova ML, Sealy TK, Vincent MJ, Erickson BR, et al. (2006) Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 80: 6497–6516. 16775337

12. Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, et al. (1998) Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6442–6447. 9658086

13. Feldmann H, Volchkov VE, Volchkova VA, Klenk HD (1999) The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Arch Virol Suppl 15: 159–169. 10470276

14. Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, et al. (2006) Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 281: 15951–15958. 16595665

15. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, et al. (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454: 177–182. doi: 10.1038/nature07082 18615077

16. Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI, et al. (2015) Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160: 904–912. doi: 10.1016/j.cell.2015.01.041 25723165

17. Reynard O, Borowiak M, Volchkova VA, Delpeut S, Mateo M, et al. (2009) Ebolavirus glycoprotein GP masks both its own epitopes and the presence of cellular surface proteins. J Virol 83: 9596–9601. doi: 10.1128/JVI.00784-09 19587051

18. Francica JR, Varela-Rohena A, Medvec A, Plesa G, Riley JL, et al. (2010) Steric shielding of surface epitopes and impaired immune recognition induced by the ebola virus glycoprotein. PLoS Pathog 6: e1001098. doi: 10.1371/journal.ppat.1001098 20844579

19. Volchkov VE, Volchkova VA, Stroher U, Becker S, Dolnik O, et al. (2000) Proteolytic processing of Marburg virus glycoprotein. Virology 268: 1–6. 10683320

20. Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA (2010) Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6: e1001110. doi: 10.1371/journal.ppat.1001110 20862315

21. Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, et al. (2010) Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 6: e1001121. doi: 10.1371/journal.ppat.1001121 20886108

22. Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM (2005) Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308: 1643–1645. 15831716

23. Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, et al. (2006) Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 80: 4174–4178. 16571833

24. Bale S, Liu T, Li S, Wang Y, Abelson D, et al. (2011) Ebola virus glycoprotein needs an additional trigger, beyond proteolytic priming for membrane fusion. PLoS Negl Trop Dis 5: e1395. doi: 10.1371/journal.pntd.0001395 22102923

25. Hood CL, Abraham J, Boyington JC, Leung K, Kwong PD, et al. (2010) Biochemical and structural characterization of Cathepsin L-processed Ebola virus glycoprotein: implications for viral entry and immunogenicity. Journal of Virology 84: 2972–2982. doi: 10.1128/JVI.02151-09 20053739

26. Brecher M, Schornberg KL, Delos SE, Fusco ML, Saphire EO, et al. (2012) Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change. J Virol 86: 364–372. doi: 10.1128/JVI.05708-11 22031933

27. Kaletsky RL, Simmons G, Bates P (2007) Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol 81: 13378–13384. 17928356

28. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, et al. (2011) Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477: 340–343. doi: 10.1038/nature10348 21866103

29. Cote M, Misasi J, Ren T, Bruchez A, Lee K, et al. (2011) Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477: 344–348. doi: 10.1038/nature10380 21866101

30. Flyak AI, Ilinykh PA, Murin CD, Garron T, Shen X, et al. (2015) Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160: 893–903. doi: 10.1016/j.cell.2015.01.031 25723164

31. Qiu X, Audet J, Wong G, Fernando L, Bello A, et al. (2013) Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci Rep 3: 3365. doi: 10.1038/srep03365 24284388

32. Pettitt J, Zeitlin L, Kim do H, Working C, Johnson JC, et al. (2013) Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 5: 199ra113. doi: 10.1126/scitranslmed.3006608 23966302

33. Marzi A, Yoshida R, Miyamoto H, Ishijima M, Suzuki Y, et al. (2012) Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLoS ONE 7: e36192. doi: 10.1371/journal.pone.0036192 22558378

34. Olinger GG Jr., Pettitt J, Kim D, Working C, Bohorov O, et al. (2012) Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proceedings of the National Academy of Sciences USA 109: 18030–18035.

35. Qiu X, Wong G, Audet J, Bello A, Fernando L, et al. (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514: 47–53. doi: 10.1038/nature13777 25171469

36. Dye JM, Herbert AS, Kuehne AI, Barth JF, Muhammad MA, et al. (2012) Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proc Natl Acad Sci U S A 109: 5034–5039. doi: 10.1073/pnas.1200409109 22411795

37. Nowakowski A, Wang C, Powers DB, Amersdorfer P, Smith TJ, et al. (2002) Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci U S A 99: 11346–11350. 12177434

38. Berry JD, Gaudet RG (2011) Antibodies in infectious diseases: polyclonals, monoclonals and niche biotechnology. N Biotechnol 28: 489–501. doi: 10.1016/j.nbt.2011.03.018 21473942

39. Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S, et al. (2013) Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog 9: e1003312. doi: 10.1371/journal.ppat.1003312 23637602

40. Saphire EO (2013) An update on the use of antibodies against the filoviruses. Immunotherapy 5: 1221–1233. doi: 10.2217/imt.13.124 24188676

41. Schmaljohn AL (2013) Protective antiviral antibodies that lack neutralizing activity: precedents and evolution of concepts. Curr HIV Res 11: 345–353. 24191933

42. Zeitlin L, Cone RA, Moench TR, Whaley KJ (2000) Preventing infectious disease with passive immunization. Microbes Infect 2: 701–708. 10884621

43. Kajihara M, Marzi A, Nakayama E, Noda T, Kuroda M, et al. (2012) Inhibition of Marburg virus budding by nonneutralizing antibodies to the envelope glycoprotein. J Virol 86: 13467–13474. doi: 10.1128/JVI.01896-12 23035224

44. Wilson JA, Hevey M, Bakken R, Guest S, Bray M, et al. (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287: 1664–1666. 10698744

45. Warfield KL, Bradfute SB, Wells J, Lofts L, Cooper MT, et al. (2009) Development and characterization of a mouse model for Marburg hemorrhagic fever. J Virol 83: 6404–6415. doi: 10.1128/JVI.00126-09 19369350

46. Murin CD, Fusco ML, Bornholdt ZA, Qiu X, Olinger GG, et al. (2014) Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl Acad Sci U S A 111: 17182–17187. doi: 10.1073/pnas.1414164111 25404321

47. Dias JM, Kuehne AI, Abelson DM, Bale S, Wong AC, et al. (2011) A shared structural solution for neutralizing ebolaviruses. Nat Struct Mol Biol 18: 1424–1427. doi: 10.1038/nsmb.2150 22101933

48. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310: 1510–1512. 16322460

49. Olinger GG Jr., Pettitt J, Kim D, Working C, Bohorov O, et al. (2012) Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci U S A 109: 18030–18035. doi: 10.1073/pnas.1213709109 23071322

50. Qiu X, Wong G, Audet J, Bello A, Fernando L, et al. (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature.

51. ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, et al. (2006) Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 3: e237. 16796401

52. Yokoyama WM, Christensen M, Dos Santos G, Miller D, Ho J, et al. (2013) Production of monoclonal antibodies. Curr Protoc Immunol 102: Unit 2 5.

53. Takada A, Robison C, Goto H, Sanchez A, Murti KG, et al. (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94: 14764–14769. 9405687

54. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, et al. (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151: 41–60. 15890530

55. Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B (2009) DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J Struct Biol 166: 205–213. 19374019

56. Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, et al. (2009) Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 166: 95–102. 19263523

57. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116: 17–24. 8742718

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#