Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues
Gene expression is a fundamental cellular process that contributes to phenotypic diversity. Gene expression can vary between alleles of an individual through differences in genomic imprinting or cis-acting regulatory variation. Distinguishing allelic activity is important for informing the abundance of altered mRNA and protein products. Advances in sequencing technologies allow us to quantify patterns of allele-specific expression (ASE) in different individuals and cell-types. Previous studies have identified patterns of ASE across human populations for single cell-types; however the degree of tissue-specificity of ASE has not been deeply characterized. In this study, we compare patterns of ASE across multiple tissues from a single individual using whole transcriptome sequencing (RNA-Seq) and a targeted, high-resolution assay (mmPCR-Seq). We detect patterns of ASE for rare deleterious and loss-of-function protein-coding variants, informing the frequency at which allelic expression could modify the functional impact of personal deleterious protein-coding across tissues. We demonstrate that these interactions occur for one third of such variants however large direction flips in allelic expression are infrequent.
Vyšlo v časopise:
Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004304
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004304
Souhrn
Gene expression is a fundamental cellular process that contributes to phenotypic diversity. Gene expression can vary between alleles of an individual through differences in genomic imprinting or cis-acting regulatory variation. Distinguishing allelic activity is important for informing the abundance of altered mRNA and protein products. Advances in sequencing technologies allow us to quantify patterns of allele-specific expression (ASE) in different individuals and cell-types. Previous studies have identified patterns of ASE across human populations for single cell-types; however the degree of tissue-specificity of ASE has not been deeply characterized. In this study, we compare patterns of ASE across multiple tissues from a single individual using whole transcriptome sequencing (RNA-Seq) and a targeted, high-resolution assay (mmPCR-Seq). We detect patterns of ASE for rare deleterious and loss-of-function protein-coding variants, informing the frequency at which allelic expression could modify the functional impact of personal deleterious protein-coding across tissues. We demonstrate that these interactions occur for one third of such variants however large direction flips in allelic expression are infrequent.
Zdroje
1. MacArthurDG, BalasubramanianS, FrankishA, HuangN, MorrisJ, et al. (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335: 823–828.
2. KeinanA, ClarkAG (2012) Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336: 740–743.
3. MacArthurDG, Tyler-SmithC (2010) Loss-of-function variants in the genomes of healthy humans. Human Molecular Genetics 19: R125–130.
4. GeB, PokholokDK, KwanT, GrundbergE, MorcosL, et al. (2009) Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. Nature Genetics 41: 1216–1222.
5. VerlaanDJ, GeB, GrundbergE, HobermanR, LamKCL, et al. (2009) Targeted screening of cis-regulatory variation in human haplotypes. Genome Research 19: 118–127.
6. BerlivetS, MoussetteS, OuimetM, VerlaanDJ, KokaV, et al. (2012) Interaction between genetic and epigenetic variation defines gene expression patterns at the asthma-associated locus 17q12-q21 in lymphoblastoid cell lines. Human Genetics 131: 1161–1171.
7. JentarraGM, RiceSG, OlfersS, RajanC, SaffenDM, et al. (2012) Skewed allele-specific expression of the NF1 gene in normal subjects: a possible mechanism for phenotypic variability in neurofibromatosis type 1. Journal of Child Neurology 27: 695–702.
8. FinchN, CarrasquilloMM, BakerM, RutherfordNJ, CoppolaG, et al. (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76: 467–474.
9. EmisonES, Garcia-BarceloM, GriceEA, LantieriF, AmielJ, et al. (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. American Journal of Human Genetics 87: 60–74.
10. MaiaA-T, AntoniouAC, O'ReillyM, SamarajiwaS, DunningM, et al. (2012) Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers. Breast Cancer Research 14: R63–R63.
11. ZhangR, RamawamiG, SmithK, GustavoT, MontgomerySB, et al. (2013) Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing. Nature Methods [Available online 24 November 2013].
12. SherryST, WardMH, KholodovM, BakerJ, PhanL, et al. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29: 308–311.
13. AbecasisGR, AltshulerD, AutonA, BrooksLD, DurbinRM, et al. (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
14. NHLBI GO Exome Sequencing Project (ESP). Available: https://esp.gs.washington.edu/drupal/. Accessed 8 April 2014.
15. NgPC, HenikoffS (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research 31: 3812–3814.
16. AdzhubeiIA, SchmidtS, PeshkinL, RamenskyVE, GerasimovaA, et al. (2010) A method and server for predicting damaging missense mutations. Nature Methods 7: 248–249.
17. DegnerJF, MarioniJC, PaiAA, PickrellJK, NkadoriE, et al. (2009) Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25: 3207–3212.
18. JayP, RougeulleC, MassacrierA, MonclaA, MatteiMG, et al. (1997) The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet 17: 357–361.
19. TuskanRG, TsangS, SunZ, BaerJ, RozenblumE, et al. (2008) Real-time PCR analysis of candidate imprinted genes on mouse chromosome 11 shows balanced expression from the maternal and paternal chromosomes and strain-specific variation in expression levels. Epigenetics 3: 43–50.
20. PantPV, TaoH, BeilharzEJ, BallingerDG, CoxDR, et al. (2006) Analysis of allelic differential expression in human white blood cells. Genome Res 16: 331–339.
21. ZhangK, LiJB, GaoY, EgliD, XieB, et al. (2009) Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nature Methods 6: 613–618.
22. BoyadjievSA, JabsEW (2000) Online Mendelian Inheritance in Man (OMIM) as a knowledgebase for human developmental disorders. Clin Genet 57: 253–266.
23. MayatepekE, KohlmüllerD (1998) Transient trimethylaminuria in childhood. Acta Paediatrica 87: 1205–1207.
24. DolphinCT, JanmohamedA, SmithRL, ShephardEA, PhillipsIR (1997) Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nature Genetics 17: 491–494.
25. LappalainenT, MontgomerySB, NicaAC, DermitzakisET (2011) Epistatic Selection between Coding and Regulatory Variation in Human Evolution and Disease. American Journal of Human Genetics 89: 459–463.
26. GibsonG (2011) Rare and common variants: twenty arguments. Nature Reviews Genetics 13: 135–145.
27. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.
28. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297–1303.
29. TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics (Oxford, England) 25: 1105–1111.
30. TrapnellC, WilliamsBa, PerteaG, MortazaviA, KwanG, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature biotechnology 28: 511–515.
31. DobinA, DavisCa, SchlesingerF, DrenkowJ, ZaleskiC, et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29: 15–21.
32. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
- Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in
- Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy
- p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision