G×G×E for Lifespan in : Mitochondrial, Nuclear, and Dietary Interactions that Modify Longevity
It is widely recognized that mitochondrial function plays an important role in longevity and healthy aging. Considerable attention has been focused on the extension of longevity by caloric or dietary restriction and mutations that alter this process, and these interventions commonly are associated with shifts in mitochondrial function. While the genetic bases of these effects are the focus of much interest, relatively little effort has been directed at understanding the role that mitochondrial DNA (mtDNA) polymorphisms play in the diet restriction response. This work presents a comprehensive effort to quantify the effects of mtDNA variants, nuclear genetic variants and dietary manipulations on longevity in Drosophila, with a focus on testing for the importance of the interactions among these factors. We found that mitochondrial genotypes can have significant effects on longevity and the diet restriction response but these effects are highly dependent on nuclear genetic (G) background and the specific diet environment (E). For example, a mitochondrial haplotype that shortens lifespan in one nuclear background or diet regime shows no such effect when the genetic background or diet regime is changed. Our experiments indicate that identifying individual mitochondrial, nuclear or dietary effects on longevity is unlikely to provide general results without quantifying the prevalent mitochondrial × nuclear × diet (G×G×E) interactions.
Vyšlo v časopise:
G×G×E for Lifespan in : Mitochondrial, Nuclear, and Dietary Interactions that Modify Longevity. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004354
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004354
Souhrn
It is widely recognized that mitochondrial function plays an important role in longevity and healthy aging. Considerable attention has been focused on the extension of longevity by caloric or dietary restriction and mutations that alter this process, and these interventions commonly are associated with shifts in mitochondrial function. While the genetic bases of these effects are the focus of much interest, relatively little effort has been directed at understanding the role that mitochondrial DNA (mtDNA) polymorphisms play in the diet restriction response. This work presents a comprehensive effort to quantify the effects of mtDNA variants, nuclear genetic variants and dietary manipulations on longevity in Drosophila, with a focus on testing for the importance of the interactions among these factors. We found that mitochondrial genotypes can have significant effects on longevity and the diet restriction response but these effects are highly dependent on nuclear genetic (G) background and the specific diet environment (E). For example, a mitochondrial haplotype that shortens lifespan in one nuclear background or diet regime shows no such effect when the genetic background or diet regime is changed. Our experiments indicate that identifying individual mitochondrial, nuclear or dietary effects on longevity is unlikely to provide general results without quantifying the prevalent mitochondrial × nuclear × diet (G×G×E) interactions.
Zdroje
1. McCayCM, MaynardLA, SperlingG, BarnesLL (1939) Retarded growth, life span, ultitimate body size and age changes in the albino rat after feeding diets restricted in calories. Journal of Nutrition 18: 1–13.
2. WeindruchR, WalfordRL, FligielS, GuthrieD (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. Journal of Nutrition 116: 641–654.
3. BrossTG, RoginaB, HelfandSL (2005) Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell 4: 309–317.
4. PartridgeL, GemsD (2002) Mechanisms of ageing: Public or private? Nature Reviews Genetics 3: 165–175.
5. WalkerG, HouthoofdK, VanfleterenJR, GemsD (2005) Dietary restriction in C. elegans: From rate-of-living effects to nutrient sensing pathways. Mechanisms of Ageing and Development 126: 929–937.
6. KenyonC (2005) The plasticity of aging: Insights from long-lived mutants. Cell 120: 449–460.
7. TatarM, BartkeA, AntebiA (2003) The endocrine regulation of aging by insulin-like signals. Science 299: 1346–1351.
8. SarbassovDD, AliSM, SabatiniDM (2005) Growing roles for the mTOR pathway. Current Opinion in Cell Biology 17: 596–603.
9. TokunagaC, YoshinoK, YonezawaK (2004) mTOR integrates amino acid- and energy-sensing pathways. Biochemical and Biophysical Research Communications 313: 443–446.
10. ZidBM, RogersAN, KatewaSD, VargasMA, KolipinskiMC, et al. (2009) 4E-BP Extends Lifespan upon Dietary Restriction by Enhancing Mitochondrial Activity in Drosophila. Cell 139: 149–160.
11. CantoC, AuwerxJ (2009) PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology 20: 98–105.
12. CantoC, JiangLQ, DeshmukhAS, MatakiC, CosteA, et al. (2010) Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle. Cell Metabolism 11: 213–219.
13. KempBE, MitchelhillKI, StapletonD, MichellBJ, ChenZP, et al. (1999) Dealing with energy demand: the AMP activated protein kinase. Trends in Biochemical Sciences 24: 22–25.
14. FinleyLWS, HaigisMC (2009) The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Research Reviews 8: 173–188.
15. CohenHY, MillerC, BittermanKJ, WallNR, HekkingB, et al. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 390–392.
16. GuarenteL, PicardF (2005) Calorie restriction - the SIR2 connection. Cell 120: 473–482.
17. NemotoS, FergussonMM, FinkelT (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306: 2105–2108.
18. WoodJG, RoginaB, LavuS, HowitzK, HelfandSL, et al. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430: 686–689.
19. SchleitJ, JohnsonSC, BennettCF, SimkoM, TrongthamN, et al. (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12: 1050–61.
20. HuangW, RichardsS, CarboneMA, ZhuD, AnholtRR, et al. (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proceedings of the National Academy of Sciences of the United States of America 109: 15553–15559.
21. LiaoCY, RikkeBA, JohnsonTE, DiazV, NelsonJF (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9: 92–95.
22. FinleyLWS, LeeJ, SouzaA, Desquiret-DumasV, BullockK, et al. (2012) Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction. Proceedings of the National Academy of Sciences of the United States of America 109: 2931–2936.
23. Lopez-LluchG, HuntN, JonesB, ZhuM, JamiesonH, et al. (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proceedings of the National Academy of Sciences of the United States of America 103: 1768–1773.
24. HirscheyMD, ShimazuT, GoetzmanE, JingE, SchwerB, et al. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464: 121–U137.
25. QiuXL, BrownK, HirscheyMD, VerdinE, ChenD (2010) Calorie Restriction Reduces Oxidative Stress by SIRT3-Mediated SOD2 Activation. Cell Metabolism 12: 662–667.
26. TaanmanJW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochimica Et Biophysica Acta-Bioenergetics 1410: 103–123.
27. GuarenteL (2008) Mitochondria - A nexus for aging, calorie restriction, and sirtuins? Cell 132: 171–176.
28. RandDM, FryA, SheldahlL (2006) Nuclear-mitochondrial epistasis and Drosophila aging: Introgression of Drosophila simulans mtDNA modifies longevity in D.melanogaster nuclear backgrounds. Genetics 172: 329–341.
29. MeiklejohnCD, HolmbeckMA, SiddiqMA, AbtDN, RandDM, et al. (2013) An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila. PLoS Genetics 9(1): e1003238.
30. HoutkooperRH, MouchiroudL, RyuD, MoullanN, KatsyubaE, et al. (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497: 451–457.
31. KapahiP, ZidBM, HarperT, KosloverD, SapinV, et al. (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biology 14: 885–890.
32. SarbassovDD, GuertinDA, AliSM, SabatiniDM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.
33. ReraM, BahadoraniS, ChoJ, KoehlerCL, UlgheraitM, et al. (2010) Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog. Cell Metabolism 14: 623–634.
34. BahadoraniS, HurJH, LoT, VuK, WalkerDW (2010) Perturbation of mitochondrial complex V alters the response to dietary restriction in Drosophila. Aging Cell 9: 100–103.
35. SkorupaDA, DervisefendicA, ZwienerJ, PletcherSD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7: 478–490.
36. GrandisonRC, WongR, BassTM, PartridgeL, PiperMDW (2009) Effect of a Standardised Dietary Restriction Protocol on Multiple Laboratory Strains of Drosophila melanogaster. PLoS One 4(1): e4067.
37. MairW, PiperMDW, PartridgeL (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biology 3(7): e223.
38. LeeKP, SimpsonSJ, ClissoldFJ, BrooksR, BallardJWO, et al. (2008) Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America 105: 2498–2503.
39. MontoothKL, MeiklejohnCD, AbtDN, RandDM (2010) Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution 64: 3364–3379.
40. RoginaB, HelfandSL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proceedings of the National Academy of Sciences of the United States of America 101: 15998–16003.
41. PulkesT, SiddiquiA, Morgan-HughesJA, HannaMG (2000) A novel mutation in the mitochondrial tRNATyr gene associated with exercise intolerance. Neurology 55: 1210–1212.
42. RileyLG, CooperS, HickeyP, Rudinger-ThirionJ, McKenzieM, et al. (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia—MLASA syndrome. American Journal of Human Genetics 87: 52–59.
43. RaffelsbergerT, RossmanithW, Thaller-AntlangerH, BittnerRE (2001) CPEO associated with a single nucleotide deletion in the mitochondrial tRNATyr gene. Neurology 57: 2298–2301.
44. SeibelP, DegoulF, RomeroN, MarsacC, KadenbachB (1990) Identification of point mutations by mispairing PCR as exemplified in MERRF disease. Biochemical and Biophysical Research Communications 173: 561–565.
45. MoraesCT (2001) What regulates mitochondrial DNA copy number in animal cells? Trends in Genetics 17: 199–205.
46. LeeHC, LiSH, LinJC, WuCC, YehDC, et al. (2004) Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutation Reseach 547: 71–78.
47. HowitzKT, BittermanKJ, CohenHY, LammingDW, LavuS, et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196.
48. KaeberleinM, McVeyM, GuarenteL (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Development 13: 2570–2580.
49. TissenbaumHA, GuarenteL (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230.
50. LandryJ, SlamaJT, SternglanzR (2000) Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochemical and Biophysical Research Communications 278: 685–690.
51. LandryJ, SuttonA, TafrovST, HellerRC, StebbinsJ, et al. (2000) The silencing protein SIR2 and its homologs are MAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America 97: 5807–5811.
52. HebertAS, Dittenhafer-ReedKE, YuW, BaileyDJ, SelenES, et al. (2012) Calorie Restriction and SIRT3 Trigger Global Reprogramming of the Mitochondrial Protein Acetylome. Molecular Cell 49: 186–199.
53. VerdinE, HirscheyMD, FinleyLWS, HaigisMC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends in Biochemical Sciences 35: 669–675.
54. ChapmanT, PartridgeL (1996) Female fitness in Drosophila melanogaster: An interaction between the effect of nutrition and of encounter rate with males. Proceedings of the Royal Society B-Biological Sciences 263: 755–759.
55. MinKJ, TatarM (2006) Restriction of amino acids extends lifespan in Drosophila melanogaster. Mechanisms of Ageing and Development 127: 643–646.
56. GuarenteL (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes & Development 14: 1021–1026.
57. BassTM, WeinkoveD, HouthoofdK, GemsD, PartridgeL (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mechanisms of Ageing and Development 128: 546–552.
58. PacholecM, BleasdaleJE, ChrunykB, CunninghamD, FlynnD, et al. (2010) SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1. Journal of Biological Chemistry 285: 8340–8351.
59. WalleT, HsiehF, DeLeggeMH, OatisJE, WalleUK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition 32: 1377–1382.
60. AstromSU, ClineTW, RineJ (2003) The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 163: 931–937.
61. BurnettC, ValentiniS, CabreiroF, GossM, SomogyvariM, et al. (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477: 482–458.
62. GriswoldtAJ, ChangKT, RunkoAP, KnighttMA, MinKT (2008) Sir2 mediates apoptosis through JNK-dependent pathways in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105: 8673–8678.
63. NewmanBL, LundbladJR, ChenY, SmolikSM (2002) A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 162: 1675–1685.
64. WhitakerR, FaulknerS, MiyokawaR, BurhennL, Henriksen, etal (2013) Increase expression of Drosophila Sir2 extends lifespan in a dose-dependent manner. Aging (Albany NY) 5: 682–691.
65. ChintapalliVR, WangJ, DowJAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics 39: 715–720.
66. RoyS, ErnstJ, KharchenkoPV, KheradpourP, NegreN, et al. (2010) Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE. Science 330: 1787–1797.
67. BallardJWO (2000) Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. Journal of Molecular Evolution 51: 48–63.
68. BallardJWO (2000) Comparative genomics of mitochondrial DNA in Drosophila simulans. Journal of Molecular Evolution 51: 64–75.
69. GuoW, JiangL, BhasinS, KhanSM, SwerdlowRH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9: 261–265.
70. Therneau TM, Grambsch PM (2001) Modeling Survival Data: Extending the Cox Model; Dietz K, Gail M, Krickeberg K, Samet J, Tsiatis A, editors. New York: Springer-Verlag. 350 p.
71. RipattiS, PalmgrenJ (2000) Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56: 1016–1022.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 5
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
- Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in
- Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy
- p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision