#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Biased, Non-equivalent Gene-Proximal and -Distal Binding Motifs of Orphan Nuclear Receptor TR4 in Primary Human Erythroid Cells


Sequential genome-wide binding studies investigated by deep sequencing (ChIP-seq) represent a powerful tool for investigating the temporal sequence of gene activation and repression events that take place as cells differentiate. Here, we report the binding of an “orphan” nuclear receptor (one for which no ligand has been identified) to its cognate genomic regulatory sites and perform the functional analysis to validate its downstream targets as precursor cells differentiate from very early human hematopoietic progenitors into red blood cells. We discovered that when this receptor is bound at gene proximal promoters, it recognizes a different DNA sequence than when it binds to more distant regulatory sites (enhancers and silencers). Since this receptor can either activate or repress specific target genes, the data suggest the intriguing possibility that the two different modes of DNA recognition may reflect association of the receptor with different partner molecules when regulating gene expression from proximal or distal sequences.


Vyšlo v časopise: Biased, Non-equivalent Gene-Proximal and -Distal Binding Motifs of Orphan Nuclear Receptor TR4 in Primary Human Erythroid Cells. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004339
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004339

Souhrn

Sequential genome-wide binding studies investigated by deep sequencing (ChIP-seq) represent a powerful tool for investigating the temporal sequence of gene activation and repression events that take place as cells differentiate. Here, we report the binding of an “orphan” nuclear receptor (one for which no ligand has been identified) to its cognate genomic regulatory sites and perform the functional analysis to validate its downstream targets as precursor cells differentiate from very early human hematopoietic progenitors into red blood cells. We discovered that when this receptor is bound at gene proximal promoters, it recognizes a different DNA sequence than when it binds to more distant regulatory sites (enhancers and silencers). Since this receptor can either activate or repress specific target genes, the data suggest the intriguing possibility that the two different modes of DNA recognition may reflect association of the receptor with different partner molecules when regulating gene expression from proximal or distal sequences.


Zdroje

1. Stamatoyannopoulos G GFHSISG, Majerus PW, Perlumtter RM, Varmus H (2001) The Molecular Basis of Blood Diseases. Philadelphia: W.B. Saunders. pp.135–182.

2. StuartMJ, NagelRL (2004) Sickle-cell disease. Lancet 364: 1343–1360.

3. OlivieriNF, WeatherallDJ (1998) The therapeutic reactivation of fetal haemoglobin. Hum Mol Genet 7: 1655–1658.

4. MarcusSJ, KinneyTR, SchultzWH, O'BranskiEE, WareRE (1997) Quantitative analysis of erythrocytes containing fetal hemoglobin (F cells) in children with sickle cell disease. Am J Hematol 54: 40–46.

5. PapadakisMN, PatrinosGP, TsaftaridisP, Loutradi-AnagnostouA (2002) A comparative study of Greek nondeletional hereditary persistence of fetal hemoglobin and beta-thalassemia compound heterozygotes. J Mol Med 80: 243–247.

6. DedoussisGV, SinopoulouK, GyparakiM, LoutradisA (2000) Fetal hemoglobin expression in the compound heterozygous state for -117 (G—>A) Agamma HPFH and IVS-1 nt 110 (G—>A) beta+ thalassemia: a case study. Eur J Haematol 65: 93–96.

7. DedoussisGV, SinopoulouK, GyparakiM, LoutradisA (1999) Fetal hemoglobin expression in the compound heterozygous state for -117 (G—>A) Agamma HPFH and IVSII-745 (C—>G) beta+ thalassemia: a case study. Am J Hematol 61: 139–143.

8. BeatoM, HerrlichP, SchutzG (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83: 851–857.

9. TanabeO, KatsuokaF, CampbellAD, SongW, YamamotoM, et al. (2002) An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J 21: 3434–3442.

10. ShiL, CuiS, EngelJD, TanabeO (2013) Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med 19: 291–294.

11. CuiS, KolodziejKE, ObaraN, Amaral-PsarrisA, DemmersJ, et al. (2011) Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic beta-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 31: 3298–3311.

12. TanabeO, McPheeD, KobayashiS, ShenY, BrandtW, et al. (2007) Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J 26: 2295–2306.

13. ChangC, Da SilvaSL, IdetaR, LeeY, YehS, et al. (1994) Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc Natl Acad Sci U S A 91: 6040–6044.

14. BookoutAL, JeongY, DownesM, YuRT, EvansRM, et al. (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126: 789–799.

15. ZhouXE, Suino-PowellKM, XuY, ChanCW, TanabeO, et al. (2011) The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J Biol Chem 286: 2877–2885.

16. LeeYF, ShyrCR, ThinTH, LinWJ, ChangC (1999) Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc Natl Acad Sci U S A 96: 14724–14729.

17. ShyrCR, HuYC, KimE, ChangC (2002) Modulation of estrogen receptor-mediated transactivation by orphan receptor TR4 in MCF-7 cells. J Biol Chem 277: 14622–14628.

18. LeeYF, LeeHJ, ChangC (2002) Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J Steroid Biochem Mol Biol 81: 291–308.

19. KimE, YangZ, LiuNC, ChangC (2005) Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5′ proximal promoter region. Biochem Biophys Res Commun 328: 85–90.

20. PollardKS, HubiszMJ, RosenbloomKR, SiepelA (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome research 20: 110–121.

21. Liu S, Xie S, Lee Y, Chang C (2010) Physiological Functions of TR2 and TR4 Orphan Nuclear Receptor. In: Bunce C, Campbell M, editors. Nuclear Receptors. New York: Springer.

22. CollinsLL, LeeYF, HeinleinCA, LiuNC, ChenYT, et al. (2004) Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc Natl Acad Sci U S A 101: 15058–15063.

23. MuX, LeeYF, LiuNC, ChenYT, KimE, et al. (2004) Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol Cell Biol 24: 5887–5899.

24. ChenYT, CollinsLL, UnoH, ChangC (2005) Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol Cell Biol 25: 2722–2732.

25. O'GeenH, LinYH, XuX, EchipareL, KomashkoVM, et al. (2010) Genome-wide binding of the orphan nuclear receptor TR4 suggests its general role in fundamental biological processes. BMC Genomics 11: 689.

26. TanabeO, ShenY, LiuQ, CampbellAD, KurohaT, et al. (2007) The TR2 and TR4 orphan nuclear receptors repress Gata1 transcription. Genes Dev 21: 2832–2844.

27. NishimuraS, TakahashiS, KurohaT, SuwabeN, NagasawaT, et al. (2000) A GATA box in the GATA-1 gene hematopoietic enhancer is a critical element in the network of GATA factors and sites that regulate this gene. Mol Cell Biol 20: 713–723.

28. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.

29. PennacchioLA, BickmoreW, DeanA, NobregaMA, BejeranoG (2013) Enhancers: five essential questions. Nat Rev Genet 14: 288–295.

30. Sikora-WohlfeldW, AckermannM, ChristodoulouEG, SingaraveluK, BeyerA (2013) Assessing computational methods for transcription factor target gene identification based on ChIP-seq data. PLoS Comput Biol 9: e1003342.

31. SiepelA, BejeranoG, PedersenJS, HinrichsAS, HouM, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome research 15: 1034–1050.

32. SandelinA, WassermanWW (2005) Prediction of nuclear hormone receptor response elements. Mol Endocrinol 19: 595–606.

33. LeeYF, PanHJ, BurbachJP, MorkinE, ChangC (1997) Identification of direct repeat 4 as a positive regulatory element for the human TR4 orphan receptor. A modulator for the thyroid hormone target genes. J Biol Chem 272: 12215–12220.

34. LeeYF, YoungWJ, BurbachJP, ChangC (1998) Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J Biol Chem 273: 13437–13443.

35. BaileyTL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27: 1653–1659.

36. de BoerE, RodriguezP, BonteE, KrijgsveldJ, KatsantoniE, et al. (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100: 7480–7485.

37. Cotnoir-WhiteD, LaperriereD, MaderS (2011) Evolution of the repertoire of nuclear receptor binding sites in genomes. Mol Cell Endocrinol 334: 76–82.

38. AlbersM, KranzH, KoberI, KaiserC, KlinkM, et al. (2005) Automated yeast two-hybrid screening for nuclear receptor-interacting proteins. Mol Cell Proteomics 4: 205–213.

39. ConsortiumEP (2011) A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9: e1001046.

40. EcknerR, EwenME, NewsomeD, GerdesM, DeCaprioJA, et al. (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884.

41. YaoTP, OhSP, FuchsM, ZhouND, Ch'ngLE, et al. (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372.

42. MerikaM, WilliamsAJ, ChenG, CollinsT, ThanosD (1998) Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell 1: 277–287.

43. BonnS, ZinzenRP, GirardotC, GustafsonEH, Perez-GonzalezA, et al. (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44: 148–156.

44. Rada-IglesiasA, BajpaiR, SwigutT, BrugmannSA, FlynnRA, et al. (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470: 279–283.

45. ZentnerGE, TesarPJ, ScacheriPC (2011) Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 21: 1273–1283.

46. HeintzmanND, StuartRK, HonG, FuY, ChingCW, et al. (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 311–318.

47. MercerEM, LinYC, BennerC, JhunjhunwalaS, DutkowskiJ, et al. (2011) Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors. Immunity 35: 413–425.

48. CarrollJS, LiuXS, BrodskyAS, LiW, MeyerCA, et al. (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122: 33–43.

49. WangQ, LiW, LiuXS, CarrollJS, JanneOA, et al. (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27: 380–392.

50. SoAY, ChaivorapolC, BoltonEC, LiH, YamamotoKR (2007) Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet 3: e94.

51. CarrollJS, MeyerCA, SongJ, LiW, GeistlingerTR, et al. (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38: 1289–1297.

52. WelborenWJ, van DrielMA, Janssen-MegensEM, van HeeringenSJ, SweepFC, et al. (2009) ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J 28: 1418–1428.

53. NielsenR, PedersenTA, HagenbeekD, MoulosP, SiersbaekR, et al. (2008) Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 22: 2953–2967.

54. JagannathanV, Robinson-RechaviM (2011) The challenge of modeling nuclear receptor regulatory networks in mammalian cells. Mol Cell Endocrinol 334: 91–97.

55. ReddyTE, PauliF, SprouseRO, NeffNF, NewberryKM, et al. (2009) Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res 19: 2163–2171.

56. KininisM, ChenBS, DiehlAG, IsaacsGD, ZhangT, et al. (2007) Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol Cell Biol 27: 5090–5104.

57. KwonYS, Garcia-BassetsI, HuttKR, ChengCS, JinM, et al. (2007) Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proc Natl Acad Sci U S A 104: 4852–4857.

58. Lieberman-AidenE, van BerkumNL, WilliamsL, ImakaevM, RagoczyT, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289–293.

59. DuanZ, AndronescuM, SchutzK, McIlwainS, KimYJ, et al. (2010) A three-dimensional model of the yeast genome. Nature 465: 363–367.

60. KalhorR, TjongH, JayathilakaN, AlberF, ChenL (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30: 90–98.

61. GottlicherM, HeckS, HerrlichP (1998) Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med (Berl) 76: 480–489.

62. HolmesKA, SongJS, LiuXS, BrownM, CarrollJS (2008) Nkx3-1 and LEF-1 function as transcriptional inhibitors of estrogen receptor activity. Cancer Res 68: 7380–7385.

63. LinCY, VegaVB, ThomsenJS, ZhangT, KongSL, et al. (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3: e87.

64. LefterovaMI, ZhangY, StegerDJ, SchuppM, SchugJ, et al. (2008) PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22: 2941–2952.

65. LandtSG, MarinovGK, KundajeA, KheradpourP, PauliF, et al. (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22: 1813–1831.

66. YangY, FearJ, HuJ, HaeckerI, ZhouL, et al. (2014) Leveraging biological replicates to improve analysis in ChIP-seq experiments. Comput Struct Biotechnol J 9: e201401002.

67. GiarratanaMC, KobariL, LapillonneH, ChalmersD, KigerL, et al. (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23: 69–74.

68. ZhangY, LiuT, MeyerCA, EeckhouteJ, JohnsonDS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137.

69. Huang daW, ShermanBT, LempickiRA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57.

70. Ho SuiSJ, MortimerJR, ArenillasDJ, BrummJ, WalshCJ, et al. (2005) oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic acids research 33: 3154–3164.

71. BryneJC, ValenE, TangMH, MarstrandT, WintherO, et al. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic acids research 36: D102–106.

72. TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111.

73. TrapnellC, RobertsA, GoffL, PerteaG, KimD, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols 7: 562–578.

74. RodriguezP, BraunH, KolodziejKE, de BoerE, CampbellJ, et al. (2006) Isolation of transcription factor complexes by in vivo biotinylation tagging and direct binding to streptavidin beads. Methods Mol Biol 338: 305–323.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#