Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in
As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in the Drosophila (fruit fly) eye, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation, we conducted a genetic dissection of glycoprotein processing in vivo. We have demonstrated that four glycosyl hydrolases play essential and unique roles in a highly coordinated pathway for N-glycan trimming during Rh1 biosynthesis. Our results reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway and provide fundamental advances towards understanding N-glycosylation in vivo.
Vyšlo v časopise:
Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004349
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004349
Souhrn
As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in the Drosophila (fruit fly) eye, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation, we conducted a genetic dissection of glycoprotein processing in vivo. We have demonstrated that four glycosyl hydrolases play essential and unique roles in a highly coordinated pathway for N-glycan trimming during Rh1 biosynthesis. Our results reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway and provide fundamental advances towards understanding N-glycosylation in vivo.
Zdroje
1. RothJ, ZuberC, ParkS, JangI, LeeY, et al. (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30: 497–506.
2. KatohT, TiemeyerM (2013) The N's and O's of Drosophila glycoprotein glycobiology. Glycoconj J 30: 57–66.
3. KornfeldR, KornfeldS (1985) Assembly of asparagine linked oligosaccharides. Annu Rev Biochem 54: 631–664.
4. SilbersteinS, GilmoreR (1996) Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J 10: 849–858.
5. Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol 3: : pii: a005199. doi: 10.1101/cshperspect.a005199.
6. CarameloJJ, ParodiAJ (2007) How sugars convey information on protein conformation in the endoplasmic reticulum. Semin Cell Dev Biol 18: 732–742.
7. KerscherS, AlbertS, WucherpfennigD, HeisenbergM, SchneuwlyS (1995) Molecular and genetic analysis of the Drosophila mas-1 (mannosidase-1) gene which encodes a glycoprotein processing alpha 1,2-mannosidase. Dev Biol 168: 613–626.
8. ParkerGF, WilliamsPJ, ButtersTD, RobertsDB (1991) Detection of the lipid-linked precursor oligosaccharide of N-linked protein glycosylation in Drosophila melanogaster. FEBS Lett 290: 58–60.
9. WilliamsPJ, WormaldMR, DwekRA, RademacherTW, ParkerGF, et al. (1991) Characterisation of oligosaccharides from Drosophila melanogaster glycoproteins. Biochim Biophys Acta 1075: 146–153.
10. LeonardR, RendicD, RabouilleC, WilsonIB, PreatT, et al. (2006) The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281: 4867–4875.
11. CaoJ, LiY, XiaW, ReddigK, HuW, et al. (2011) A Drosophila metallophosphoesterase mediates deglycosylation of rhodopsin. EMBO J 30: 3701–3713.
12. EnglebienneP, FiauxH, KuntzDA, CorbeilCR, Gerber-LemaireS, et al. (2007) Evaluation of docking programs for predicting binding of Golgi alpha-mannosidase II inhibitors: a comparison with crystallography. Proteins 69: 160–176.
13. FiauxH, KuntzDA, HoffmanD, JanzerRC, Gerber-LemaireS, et al. (2008) Functionalized pyrrolidine inhibitors of human type II alpha-mannosidases as anti-cancer agents: optimizing the fit to the active site. Bioorg Med Chem 16: 7337–7346.
14. KawatkarSP, KuntzDA, WoodsRJ, RoseDR, BoonsGJ (2006) Structural basis of the inhibition of Golgi alpha-mannosidase II by mannostatin A and the role of the thiomethyl moiety in ligand-protein interactions. J Am Chem Soc 128: 8310–8319.
15. KuntzDA, ZhongW, GuoJ, RoseDR, BoonsGJ (2009) The molecular basis of inhibition of Golgi alpha-mannosidase II by mannostatin A. Chembiochem 10: 268–277.
16. KuntzDA, NakayamaS, SheaK, HoriH, UtoY, et al. (2010) Structural investigation of the binding of 5-substituted swainsonine analogues to Golgi alpha-mannosidase II. Chembiochem 11: 673–680.
17. NumaoS, KuntzDA, WithersSG, RoseDR (2003) Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J Biol Chem 278: 48074–48083.
18. PolakovaM, SestakS, LattovaE, PetrusL, MuchaJ, et al. (2011) alpha-D-mannose derivatives as models designed for selective inhibition of Golgi alpha-mannosidase II. Eur J Med Chem 46: 944–952.
19. ShahN, KuntzDA, RoseDR (2003) Comparison of kifunensine and 1-deoxymannojirimycin binding to class I and II alpha-mannosidases demonstrates different saccharide distortions in inverting and retaining catalytic mechanisms. Biochemistry 42: 13812–13816.
20. ShahN, KuntzDA, RoseDR (2008) Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci U S A 105: 9570–9575.
21. van den ElsenJM, KuntzDA, RoseDR (2001) Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J 20: 3008–3017.
22. ZhongW, KuntzDA, EmberB, SinghH, MoremenKW, et al. (2008) Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant. J Am Chem Soc 130: 8975–8983.
23. JaekenJ, MatthijsG (2007) Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet 8: 261–278.
24. GrunewaldS, MatthijsG (2000) Congenital disorders of glycosylation (CDG): a rapidly expanding group of neurometabolic disorders. Neuropediatrics 31: 57–59.
25. KahookMY, MandavaN, BatemanJB, ThomasJA (2006) Glycosylation type Ic disorder: idiopathic intracranial hypertension and retinal degeneration. Br J Ophthalmol 90: 115–116.
26. MoravaE, WosikHN, Sykut-CegielskaJ, AdamowiczM, GuillardM, et al. (2009) Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol 93: 350–354.
27. BediluR, NummyKA, CooperA, WeversR, SmeitinkJ, et al. (2002) Variable clinical presentation of lysosomal beta-mannosidosis in patients with null mutations. Mol Genet Metab 77: 282–290.
28. MalmD, NilssenO (2008) Alpha-mannosidosis. Orphanet J Rare Dis 3: 21.
29. KleijerWJ, HuP, ThoomesR, BoerM, HuijmansJG, et al. (1990) Beta-mannosidase deficiency: heterogeneous manifestation in the first female patient and her brother. J Inherit Metab Dis 13: 867–872.
30. HuynhT, KhanJM, RanganathanS (2011) A comparative structural bioinformatics analysis of inherited mutations in beta-D-Mannosidase across multiple species reveals a genotype-phenotype correlation. BMC Genomics 12(Suppl 3): S22.
31. SamraZQ, AtharMA (2008) Cloning, sequence, expression and characterization of human beta-mannosidase. Acta Biochim Pol 55: 479–490.
32. MahuranDJ (1999) Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta 1455: 105–138.
33. PatnaikSK, StanleyP (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416: 159–182.
34. ElbeinAD (1991) Glycosidase inhibitors as antiviral and/or antitumor agents. Semin Cell Biol 2: 309–317.
35. MoremenKW (2002) Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta 1573: 225–235.
36. de CouetHG, TanimuraT (1987) Monoclonal antibodies provide evidence that rhodopsin in the outer rhabdomeres of Drosophila melanogaster is not glycosylated. Eur J Cell Biol 44: 50–56.
37. HuberA, SmithDP, ZukerCS, PaulsenR (1990) Opsin of Calliphora peripheral photoreceptors R1-6. Homology with Drosophila Rh1 and posttranslational processing. J Biol Chem 265: 17906–17910.
38. WebelR, MenonI, O'TousaJ, ColleyNJ (2000) Role of asparagine-linked glycosylation sites in Rhodopsin maturation and association with its molecular chaperone, NinaA. J Biol Chem 275: 24752–24759.
39. ColleyNJ, BakerEK, StamnesMA, ZukerCS (1991) The cyclophilin homolog ninaA is required in the secretory pathway. Cell 67: 255–263.
40. ColleyNJ, CassillJA, BakerEK, ZukerCS (1995) Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci U S A 92: 3070–3074.
41. KoundakjianEJ, CowanDM, HardyRW, BeckerAH (2004) The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167: 203–206.
42. SchneuwlyS, ShortridgeRD, LarriveeDC, OnoT, OzakiM, et al. (1989) Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporin A binding protein). Proc Natl Acad Sci U S A 86: 5390–5394.
43. ShiehBH, StamnesMA, SeavelloS, HarrisGL, ZukerCS (1989) The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature 338: 67–70.
44. StamnesMA, ShiehBH, ChumanL, HarrisGL, ZukerCS (1991) The cyclophilin homolog NinaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell 65: 219–227.
45. BakerEK, ColleyNJ, ZukerCS (1994) The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J 13: 4886–4895.
46. NemcovicovaI, SestakS, RendicD, PlskovaM, MuchaJ, et al. (2013) Characterisation of class I and II alpha-mannosidases from Drosophila melanogaster. Glycoconj J 30: 899–909.
47. CattaneoF, PasiniME, IntraJ, MatsumotoM, BrianiF, et al. (2006) Identification and expression analysis of Drosophila melanogaster genes encoding beta-hexosaminidases of the sperm plasma membrane. Glycobiology 16: 786–800.
48. HerscovicsA (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473: 96–107.
49. HerscovicsA (2001) Structure and function of Class I alpha 1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83: 757–762.
50. MastSW, MoremenKW (2006) Family 47 alpha-mannosidases in N-glycan processing. Methods Enzymol 415: 31–46.
51. HarpazN, SchachterH (1980) Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi alpha-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. J Biol Chem 255: 4894–4902.
52. SchachterH, ChenSH, ZhouS, TanJ, YipB, et al. (1997) Structure and function of the genes encoding N-acetylglucosaminyltransferases which initiate N-glycan antennae. Biochem Soc Trans 25: 875–880.
53. SchachterH (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1: 453–461.
54. HowardS, BraunC, McCarterJ, MoremenKW, LiaoYF, et al. (1997) Human lysosomal and jack bean alpha-mannosidases are retaining glycosidases. Biochem Biophys Res Commun 238: 896–898.
55. MaleyF, TrimbleRB, TarentinoAL, PlummerTHJr (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180: 195–204.
56. AkamaTO, NakagawaH, WongNK, Sutton-SmithM, DellA, et al. (2006) Essential and mutually compensatory roles of alpha-mannosidase II and alpha-mannosidase IIx in N-glycan processing in vivo in mice. Proc Natl Acad Sci U S A 103: 8983–8988.
57. MoremenKW, RobbinsPW (1991) Isolation, characterization, and expression of cDNAs encoding murine alpha-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J Cell Biol 115: 1521–1534.
58. MisagoM, LiaoYF, KudoS, EtoS, MatteiMG, et al. (1995) Molecular cloning and expression of cDNAs encoding human alpha-mannosidase II and a previously unrecognized alpha-mannosidase IIx isozyme. Proc Natl Acad Sci U S A 92: 11766–11770.
59. FukudaMN, MasriKA, DellA, LuzzattoL, MoremenKW (1990) Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding alpha-mannosidase II. Proc Natl Acad Sci U S A 87: 7443–7447.
60. StowersRS, SchwarzTL (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152: 1631–1639.
61. HsiaoHY, JukamD, JohnstonR, DesplanC (2013) The neuronal transcription factor erect wing regulates specification and maintenance of Drosophila R8 photoreceptor subtypes. Dev Biol 381: 482–490.
62. MaccioniHJ (2007) Glycosylation of glycolipids in the Golgi complex. J Neurochem 103(Suppl 1): 81–90.
63. VarkiA (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8: 34–40.
64. AltmannF, SchwihlaH, StaudacherE, GlosslJ, MarzL (1995) Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem 270: 17344–17349.
65. BoquetI, HitierR, DumasM, ChaminadeM, PreatT (2000) Central brain postembryonic development in Drosophila: implication of genes expressed at the interhemispheric junction. J Neurobiol 42: 33–48.
66. LiaoYF, LalA, MoremenKW (1996) Cloning, expression, purification, and characterization of the human broad specificity lysosomal acid alpha-mannosidase. J Biol Chem 271: 28348–28358.
67. MerkleRK, ZhangY, RuestPJ, LalA, LiaoYF, et al. (1997) Cloning, expression, purification, and characterization of the murine lysosomal acid alpha-mannosidase. Biochim Biophys Acta 1336: 132–146.
68. WakamatsuN, GotodaY, SaitoS, KawaiH (1997) Characterization of the human MANB gene encoding lysosomal alpha-D-mannosidase. Gene 198: 351–357.
69. DanielPF, EvansJE, De GasperiR, WinchesterB, WarrenCD (1992) A human lysosomal alpha(1→6)-mannosidase active on the branched trimannosyl core of complex glycans. Glycobiology 2: 327–336.
70. De GasperiR, DanielPF, WarrenCD (1992) A human lysosomal alpha-mannosidase specific for the core of complex glycans. J Biol Chem 267: 9706–9712.
71. ParkC, MengL, StantonLH, CollinsRE, MastSW, et al. (2005) Characterization of a human core-specific lysosomal alpha 1,6-mannosidase involved in N-glycan catabolism. J Biol Chem 280: 37204–37216.
72. AlkhayatAH, KraemerSA, LeipprandtJR, MacekM, KleijerWJ, et al. (1998) Human beta-mannosidase cDNA characterization and first identification of a mutation associated with human beta-mannosidosis. Hum Mol Genet 7: 75–83.
73. WinchesterB (2005) Lysosomal metabolism of glycoproteins. Glycobiology 15: 1R–15R.
74. RobinsonD, StirlingJL (1968) N-Acetyl-beta-glucosaminidases in human spleen. Biochem J 107: 321–327.
75. MyerowitzR, ProiaRL (1984) cDNA clone for the alpha-chain of human beta-hexosaminidase: deficiency of alpha-chain mRNA in Ashkenazi Tay-Sachs fibroblasts. Proc Natl Acad Sci U S A 81: 5394–5398.
76. O'DowdBF, QuanF, WillardHF, LamhonwahAM, KornelukRG, et al. (1985) Isolation of cDNA clones coding for the beta subunit of human beta-hexosaminidase. Proc Natl Acad Sci U S A 82: 1184–1188.
77. TulsianiDR, Abou-HailaA (2001) Mammalian sperm molecules that are potentially important in interaction with female genital tract and egg vestments. Zygote 9: 51–69.
78. CattaneoF, OgisoM, HoshiM, PerottiME, PasiniME (2002) Purification and characterization of the plasma membrane glycosidases of Drosophila melanogaster spermatozoa. Insect Biochem Mol Biol 32: 929–941.
79. MillerDJ, GongX, ShurBD (1993) Sperm require beta-N-acetylglucosaminidase to penetrate through the egg zona pellucida. Development 118: 1279–1289.
80. MencarelliS, CavalieriC, MaginiA, TanciniB, BassoL, et al. (2005) Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579: 5501–5506.
81. HarrisonRL, JarvisDL (2006) Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv Virus Res 68: 159–191.
82. TomiyaN, BetenbaughMJ, LeeYC (2003) Humanization of lepidopteran insect-cell-produced glycoproteins. Acc Chem Res 36: 613–620.
83. GeislerC, AumillerJJ, JarvisDL (2008) A fused lobes gene encodes the processing beta-N-acetylglucosaminidase in Sf9 cells. J Biol Chem 283: 11330–11339.
84. KimJH, LingwoodCA, WilliamsDB, FuruyaW, ManolsonMF, et al. (1996) Dynamic measurement of the pH of the Golgi complex in living cells using retrograde transport of the verotoxin receptor. J Cell Biol 134: 1387–1399.
85. O'TousaJE (1992) Requirement of N-linked glycosylation site in Drosophila rhodopsin. Visual Neuroscience 8: 385–390.
86. BrownG, ChenDM, ChristiansonJS, LeeR, StarkWS (1994) Receptor demise from alteration of glycosylation site in Drosophila opsin: electrophysiology, microspectrophotometry, and electron microscopy. Visual Neuroscience 11: 619–628.
87. KatanosakaK, TokunagaF, KawamuraS, OzakiK (1998) N-Linked glycosylation of Drosophila rhodopsin occurs exclusively in the amino-terminal domain and functions in rhodopsin maturation. FEBS 424: 149–154.
88. LiZY, JacobsonSG, MilamAH (1994) Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry. Experimental Eye Research 58: 397–408.
89. DaigerSP, SullivanLS, RodriguezJA (1995) Correlation of phenotype with genotype in inherited retinal degeneration. Behavioral and Brain Sciences 18: 452–467.
90. PapermasterDS, WindleJ (1995) Death at an early age. Apoptosis in inherited retinal degenerations. Investigative Ophthalmology & Visual Science 36: 977–983.
91. RosenbaumEE, BrehmKS, VasiljevicE, GajeskiA, ColleyNJ (2012) Drosophila GPI-mannosyltransferase 2 is required for GPI anchor attachment and surface expression of chaoptin. Vis Neurosci 29: 143–156.
92. RosenbaumEE, BrehmKS, VasiljevicE, LiuCH, HardieRC, et al. (2011) XPORT-dependent transport of TRP and rhodopsin. Neuron 72: 602–615.
93. RosenbaumEE, HardieRC, ColleyNJ (2006) Calnexin is essential for rhodopsin maturation, Ca2+ regulation, and photoreceptor cell survival. Neuron 49: 229–241.
94. LaemmliUK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 5
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
- Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in
- Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy
- p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision