R-loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome
Friedreich ataxia and Fragile X syndrome are among 40 human diseases associated with expansion of repeated sequences. In both disorders repeat expansion leads to gene silencing, the molecular mechanism of which is not well understood, impeding the development of specific therapies to treat these disorders. It is proposed that formation of unusual DNA structures (RNA/DNA hybrids, or R-loops) over repeat regions may play a role, but their molecular function has not been investigated in vivo. We show that R-loops form on expanded repeats of FXN and FMR1 genes in cells from FRDA and FXS patients. These R-loops are stable, correlate with repressive chromatin marks and hinder FXN transcription in patient cells. We studied the relationship between repressive chromatin and R-loops. Decrease in the amount of repressive chromatin has no effect on R-loop levels. In contrast, increase in the R-loops leads to transcriptional silencing of FXN gene and formation of repressive chromatin, providing a direct molecular link between R-loops and pathology of expansion diseases. This discovery is important for understanding the basic molecular mechanism underlying the pathology of expansion diseases. The ability of R-loops to trigger transcriptional silencing makes them an attractive target for future therapeutic approaches to treat these diseases.
Vyšlo v časopise:
R-loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004318
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004318
Souhrn
Friedreich ataxia and Fragile X syndrome are among 40 human diseases associated with expansion of repeated sequences. In both disorders repeat expansion leads to gene silencing, the molecular mechanism of which is not well understood, impeding the development of specific therapies to treat these disorders. It is proposed that formation of unusual DNA structures (RNA/DNA hybrids, or R-loops) over repeat regions may play a role, but their molecular function has not been investigated in vivo. We show that R-loops form on expanded repeats of FXN and FMR1 genes in cells from FRDA and FXS patients. These R-loops are stable, correlate with repressive chromatin marks and hinder FXN transcription in patient cells. We studied the relationship between repressive chromatin and R-loops. Decrease in the amount of repressive chromatin has no effect on R-loop levels. In contrast, increase in the R-loops leads to transcriptional silencing of FXN gene and formation of repressive chromatin, providing a direct molecular link between R-loops and pathology of expansion diseases. This discovery is important for understanding the basic molecular mechanism underlying the pathology of expansion diseases. The ability of R-loops to trigger transcriptional silencing makes them an attractive target for future therapeutic approaches to treat these diseases.
Zdroje
1. Lopez CastelA, ClearyJD, PearsonCE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11: 165–170.
2. CampuzanoV, MonterminiL, MoltoMD, PianeseL, CosseeM, et al. (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271: 1423–1427.
3. MarmolinoD (2011) Friedreich's ataxia: past, present and future. Brain Res Rev 67: 311–330.
4. KumariD, BiacsiRE, UsdinK (2011) Repeat expansion affects both transcription initiation and elongation in friedreich ataxia cells. J Biol Chem 286: 4209–4215.
5. HermanD, JenssenK, BurnettR, SoragniE, PerlmanSL, et al. (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2: 551–558.
6. KimE, NapieralaM, DentSY (2011) Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia. Nucleic Acids Res 39: 8366–8377.
7. GreeneE, MahishiL, EntezamA, KumariD, UsdinK (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35: 3383–3390.
8. KumariD, UsdinK (2012) Is Friedreich ataxia an epigenetic disorder? Clin Epigenetics 4: 2.
9. ChanPK, TorresR, YandimC, LawPP, KhadayateS, et al. (2013) Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich's ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum Mol Genet 22: 2662–2675.
10. WellsRD (2008) DNA triplexes and Friedreich ataxia. FASEB J 22: 1625–1634.
11. AguileraA, Garcia-MuseT (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46: 115–124.
12. HuangFT, YuK, HsiehCL, LieberMR (2006) Downstream boundary of chromosomal R-loops at murine switch regions: implications for the mechanism of class switch recombination. Proc Natl Acad Sci U S A 103: 5030–5035.
13. YuK, ChedinF, HsiehCL, WilsonTE, LieberMR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4: 442–451.
14. LiX, ManleyJL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122: 365–378.
15. GinnoPA, LottPL, ChristensenHC, KorfI, ChedinF (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45: 814–825.
16. Skourti-StathakiK, ProudfootNJ, GromakN (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42: 794–805.
17. GrabczykE, MancusoM, SammarcoMC (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35: 5351–5359.
18. ReddyK, TamM, BowaterRP, BarberM, TomlinsonM, et al. (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39: 1749–1762.
19. LinY, DentSY, WilsonJH, WellsRD, NapieralaM (2010) R loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci U S A 107: 692–697.
20. LinY, WilsonJH (2012) Nucleotide excision repair, mismatch repair, and R-loops modulate convergent transcription-induced cell death and repeat instability. PLoS One 7: e46807.
21. PungaT, BuhlerM (2010) Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med 2: 120–129.
22. PhillipsDD, GarbocziDN, SinghK, HuZ, LepplaSH, et al. (2013) The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit 26: 376–381.
23. LufinoMM, SilvaAM, NemethAH, Alegre-AbarrateguiJ, RussellAJ, et al. (2013) A GAA repeat expansion reporter model of Friedreich's ataxia recapitulates the genomic context and allows rapid screening of therapeutic compounds. Hum Mol Genet 22: 5173–5187.
24. CerritelliSM, CrouchRJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276: 1494–1505.
25. El HageA, FrenchSL, BeyerAL, TollerveyD (2010) Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24: 1546–1558.
26. SordetO, RedonCE, Guirouilh-BarbatJ, SmithS, SolierS, et al. (2009) Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep 10: 887–893.
27. SantoroMR, BraySM, WarrenST (2011) Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol 7: 219–245.
28. CoffeeB, ZhangF, CemanS, WarrenST, ReinesD (2002) Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome. Am J Hum Genet 71: 923–932.
29. HuertasP, AguileraA (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12: 711–721.
30. TousC, AguileraA (2007) Impairment of transcription elongation by R-loops in vitro. Biochem Biophys Res Commun 360: 428–432.
31. ColakD, ZaninovicN, CohenMS, RosenwaksZ, YangWY, et al. (2014) Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343: 1002–1005.
32. NakamaM, KawakamiK, KajitaniT, UranoT, MurakamiY (2012) DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation. Genes Cells 17: 218–233.
33. GinnoPA, LimYW, LottPL, KorfI, ChedinF (2013) GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23: 1590–1600.
34. KadenerS, FededaJP, RosbashM, KornblihttAR (2002) Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci U S A 99: 8185–8190.
35. WestS, GromakN, ProudfootNJ (2004) Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432: 522–525.
36. HollowayTP, RowleySM, DelatyckiMB, SarseroJP (2011) Detection of interruptions in the GAA trinucleotide repeat expansion in the FXN gene of Friedreich ataxia. Biotechniques 50: 182–186.
37. BoguslawskiSJ, SmithDE, MichalakMA, MickelsonKE, YehleCO, et al. (1986) Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods 89: 123–130.
38. WollertonMC, GoodingC, WagnerEJ, Garcia-BlancoMA, SmithCW (2004) Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell 13: 91–100.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
- Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in
- Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy
- p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision