#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in


Pollen development, or male gametogenesis, is a process by which a haploid uninucleate microspore undergoes cell division and specification to form a mature pollen grain containing two sperm cells. The highly defined cell linage makes pollen development an ideal model to understand the regulation of plant cellular development. Pollen development has multiple phases and involves dynamic changes in gene expression, which highlights the importance of transcription factors and their regulatory pathway(s). In this report, we demonstrate that WRKY34 and WRKY2, two closely related WRKY transcription factors in Arabidopsis, play important roles in pollen development. WRKY34 is phosphorylated by MPK3/MPK6, two functionally redundant mitogen-activated protein kinases (MAPKs or MPKs), at early stages in pollen development. Utilizing a combination of genetic, biochemical, and cytological tools, we determined that this MAPK-WRKY signaling module functions at the early stage of pollen development. Loss of function of this pathway reduces pollen viability, and the surviving pollen has poor germination and reduced pollen tube growth, all of which reduce the transmission rate of the mutant pollen. This study discovers a novel stage-specific signaling pathway in pollen development.


Vyšlo v časopise: Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004384
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004384

Souhrn

Pollen development, or male gametogenesis, is a process by which a haploid uninucleate microspore undergoes cell division and specification to form a mature pollen grain containing two sperm cells. The highly defined cell linage makes pollen development an ideal model to understand the regulation of plant cellular development. Pollen development has multiple phases and involves dynamic changes in gene expression, which highlights the importance of transcription factors and their regulatory pathway(s). In this report, we demonstrate that WRKY34 and WRKY2, two closely related WRKY transcription factors in Arabidopsis, play important roles in pollen development. WRKY34 is phosphorylated by MPK3/MPK6, two functionally redundant mitogen-activated protein kinases (MAPKs or MPKs), at early stages in pollen development. Utilizing a combination of genetic, biochemical, and cytological tools, we determined that this MAPK-WRKY signaling module functions at the early stage of pollen development. Loss of function of this pathway reduces pollen viability, and the surviving pollen has poor germination and reduced pollen tube growth, all of which reduce the transmission rate of the mutant pollen. This study discovers a novel stage-specific signaling pathway in pollen development.


Zdroje

1. McCormickS (2004) Control of male gametophyte development. Plant Cell 16 Suppl: 53

2. HonysD, TwellD (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5: R85.

3. MascarenhasJP (1990) Gene activity during pollen development. Annu Rev Plant Biol 41: 317–655.

4. WangJ, QiuX, LiY, DengY, ShiT (2011) A transcriptional dynamic network during Arabidopsis thaliana pollen development. BMC Systems Bio 5: S8.

5. VerelstW, TwellD, de FolterS, ImminkR, SaedlerH, et al. (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8: R249.

6. KobayashiA, SakamotoA, KuboK, RybkaZ, KannoY, et al. (1998) Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. Plant J 13: 571–577.

7. SegerR, KrebsEG (1995) The MAPK signaling cascade. FASEB J 9: 726–735.

8. JacobsD, GlossipD, XingH, MuslinAJ, KornfeldK (1999) Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13: 163–175.

9. MaoG, MengX, LiuY, ZhengZ, ChenZ, et al. (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23: 1639–1653.

10. LampardGR, MacalisterCA, BergmannDC (2008) Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322: 1113–1116.

11. BethkeG, UnthanT, UhrigJF, PoschlY, GustAA, et al. (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci USA 106: 8067–8072.

12. LiuY, ZhangS (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386–3485.

13. WangH, NgwenyamaN, LiuY, WalkerJ, ZhangS (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19: 63–73.

14. MengX, XuJ, HeY, YangKY, MordorskiB, et al. (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25: 1126–1142.

15. ZhengZ, QamarS, ChenZ, MengisteT (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48: 592–1197.

16. LiG, MengX, WangR, MaoG, HanL, et al. (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8: e1002767.

17. EulgemT, RushtonP, RobatzekS, SomssichI (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199–206.

18. ZouC, JiangW, YuD (2010) Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61: 3901–3914.

19. HonysD, OhSA, RenakD, DondersM, SolcovaB, et al. (2006) Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in Arabidopsis. BMC Plant Biol 6: 31.

20. TwellD, YamaguchiJ, McCormickS (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109: 705–713.

21. SmythDR, BowmanJL, MeyerowitzEM (1990) Early flower development in Arabidopsis. Plant Cell 2: 755–767.

22. TwellD, YamaguchiJ, WingRA, UshibaJ, McCormickS (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5: 496–507.

23. KinoshitaE, TakahashiM, TakedaH, ShiroM, KoikeT (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 2004: 1189–1193.

24. UedaM, ZhangZ, LauxT (2011) Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Dev Cell 20: 264–334.

25. AlexanderM (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44: 117–122.

26. WangH, LiuY, BruffettK, LeeJ, HauseG, et al. (2008) Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Plant Cell 20: 602–613.

27. MorrisonDK, DavisRJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

28. DardN, PeterM (2006) Scaffold proteins in MAP kinase signaling: more than simple passive activating platforms. Bioessays 28: 146–156.

29. KolchW (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

30. RemenyiA, GoodMC, BhattacharyyaRP, LimWA (2005) The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Mol Cell 20: 951–962.

31. WidmannC, GibsonS, JarpeMB, JohnsonGL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.

32. MorA, PhilipsMR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24: 771–800.

33. SchwartzMA, MadhaniHD (2004) Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38: 725–748.

34. ZhangS, KlessigD (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6: 520–527.

35. Zhang S (2008) Mitogen-activated protein kinase cascades in plant intracellular signaling. In: Yang Z, editor. Annual Plant Reviews Volume 33: Intracellular Signaling in Plants: Oxford: Wiley-Blackwell. pp. 100–136.

36. RenD, LiuY, YangK, HanL, MaoG, et al. (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 105: 5638–5643.

37. RushtonP, SomssichI, RinglerP, ShenQ (2010) WRKY transcription factors. Trends Plant Sci 15: 247–305.

38. MiaoY, LaunT, ZimmermannP, ZentgrafU (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55: 853–867.

39. KangX, LiW, ZhouY, NiM (2013) A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genet 9: e1003347.

40. GrunewaldW, De SmetI, LewisDR, LofkeC, JansenL, et al. (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA 109: 1554–1559.

41. TeigeM, ScheiklE, EulgemT, DocziR, IchimuraK, et al. (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15: 141–152.

42. JiangW, YuD (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9: 96.

43. FisherC, PeiG (1997) Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23: 570.

44. ZhengL, BaumannU, ReymondJ-L (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32: e115.

45. HellensRP, EdwardsEA, LeylandNR, BeanS, MullineauxPM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42: 819–832.

46. CloughS, BentA (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–778.

47. Heslop-HarrisonJ, Heslop-HarrisonY (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45: 115–120.

48. BoavidaLC, McCormickS (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52: 570–582.

49. AbràmoffMD, MagalhãesPJ, RamSJ (2004) Image processing with ImageJ. Biophotonics Int 11: 36–78.

50. KumarS, NeiM, DudleyJ, TamuraK (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299–306.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#