Altered Behavioral Performance and Live Imaging of Circuit-Specific Neural Deficiencies in a Zebrafish Model for Psychomotor Retardation
In a wide range of brain disorders, mutations in specific genes cause alterations in the development and function of neural circuits that ultimately affect behavior. A major challenge is to uncover the mechanism and provide treatment which is capable of preventing brain damage. Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by intellectual disabilities, neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter MCT8 are associated with AHDS. Mice that lack the MCT8 protein exhibited impaired TH levels, as is the case in human patients; however, they lack neurological defects. Here, we generated an mct8 mutant (mct8−/−) zebrafish, which exhibited neurological and behavioral deficiencies and mimics pathological conditions of AHDS patients. The zebrafish is a simple transparent vertebrate and its nervous system is conserved with mammals. Time-lapse live imaging of single axons and synapses, and video-tracking of behavior revealed deficiencies in neural circuit assembly, which are associated with disturbed sleep and altered locomotor activity. In addition, since the mct8−/− larvae provides a highthroughput platform for testing therapeutic drugs, we showed that TH analogs can recover neurological deficiencies in an animal model for psychomotor retardation.
Vyšlo v časopise:
Altered Behavioral Performance and Live Imaging of Circuit-Specific Neural Deficiencies in a Zebrafish Model for Psychomotor Retardation. PLoS Genet 10(9): e32767. doi:10.1371/journal.pgen.1004615
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004615
Souhrn
In a wide range of brain disorders, mutations in specific genes cause alterations in the development and function of neural circuits that ultimately affect behavior. A major challenge is to uncover the mechanism and provide treatment which is capable of preventing brain damage. Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by intellectual disabilities, neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter MCT8 are associated with AHDS. Mice that lack the MCT8 protein exhibited impaired TH levels, as is the case in human patients; however, they lack neurological defects. Here, we generated an mct8 mutant (mct8−/−) zebrafish, which exhibited neurological and behavioral deficiencies and mimics pathological conditions of AHDS patients. The zebrafish is a simple transparent vertebrate and its nervous system is conserved with mammals. Time-lapse live imaging of single axons and synapses, and video-tracking of behavior revealed deficiencies in neural circuit assembly, which are associated with disturbed sleep and altered locomotor activity. In addition, since the mct8−/− larvae provides a highthroughput platform for testing therapeutic drugs, we showed that TH analogs can recover neurological deficiencies in an animal model for psychomotor retardation.
Zdroje
1. KaufmannWE, MoserHW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex N Y N 1991 10: 981–991.
2. RamockiMB, ZoghbiHY (2008) Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455: 912–918 doi:10.1038/nature07457
3. BrockmannK, DumitrescuAM, BestTT, HanefeldF, RefetoffS (2005) X-linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene. J Neurol 252: 663–666 doi:10.1007/s00415-005-0713-3
4. FriesemaECH, GruetersA, BiebermannH, KrudeH, von MoersA, et al. (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364: 1435–1437 doi:10.1016/S0140-6736(04)17226-7
5. YenPM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097–1142.
6. PizzagalliF, HagenbuchB, StiegerB, KlenkU, FolkersG, et al. (2002) Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol Baltim Md 16: 2283–2296 doi:10.1210/me.2001-0309
7. RobertsLM, WoodfordK, ZhouM, BlackDS, HaggertyJE, et al. (2008) Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 149: 6251–6261 doi:10.1210/en.2008-0378
8. FriesemaECH, VisserTJ, BorgersAJ, KalsbeekA, SwaabDF, et al. (2012) Thyroid hormone transporters and deiodinases in the developing human hypothalamus. Eur J Endocrinol Eur Fed Endocr Soc 167: 379–386 doi:10.1530/EJE-12-0177
9. DumitrescuAM, LiaoX-H, WeissRE, MillenK, RefetoffS (2006) Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology 147: 4036–4043 doi:10.1210/en.2006-0390
10. TrajkovicM, VisserTJ, MittagJ, HornS, LukasJ, et al. (2007) Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 117: 627–635 doi:10.1172/JCI28253
11. Di CosmoC, LiaoX-H, YeH, FerraraAM, WeissRE, et al. (2013) Mct8-deficient mice have increased energy expenditure and reduced fat mass that is abrogated by normalization of serum t3 levels. Endocrinology 154: 4885–4895 doi:10.1210/en.2013-1150
12. RodriguesTB, CeballosA, Grijota-MartínezC, NuñezB, RefetoffS, et al. (2013) Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8). PloS One 8: e74621 doi:10.1371/journal.pone.0074621
13. MayerlS, VisserTJ, DarrasVM, HornS, HeuerH (2012) Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 153: 1528–1537 doi:10.1210/en.2011-1633
14. ItoK, UchidaY, OhtsukiS, AizawaS, KawakamiH, et al. (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100: 3939–3950 doi:10.1002/jps.22487
15. MeyerMP, SmithSJ (2006) Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J Neurosci Off J Soc Neurosci 26: 3604–3614 doi:10.1523/JNEUROSCI.0223-06.2006
16. NaumannEA, KampffAR, ProberDA, SchierAF, EngertF (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 13: 513–520 doi:10.1038/nn.2518
17. AppelbaumL, WangG, YokogawaT, SkariahGM, SmithSJ, et al. (2010) Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 68: 87–98 doi:10.1016/j.neuron.2010.09.006
18. HeijlenM, HoubrechtsAM, DarrasVM (2013) Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development. Gen Comp Endocrinol 188: 289–296 doi:10.1016/j.ygcen.2013.04.004
19. TamplinOJ, WhiteRM, JingL, KaufmanCK, LacadieSA, et al. (2012) Small molecule screening in zebrafish: swimming in potential drug therapies. Wiley Interdiscip Rev Dev Biol 1: 459–468 doi:10.1002/wdev.37
20. VatineGD, ZadaD, Lerer-GoldshteinT, TovinA, MalkinsonG, et al. (2013) Zebrafish as a model for monocarboxyl transporter 8-deficiency. J Biol Chem 288: 169–180 doi:10.1074/jbc.M112.413831
21. ArjonaFJ, de VriezeE, VisserTJ, FlikG, KlarenPHM (2011) Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter. Endocrinology 152: 5065–5073 doi:10.1210/en.2011-1166
22. FerraraAM, LiaoX-H, Gil-IbáñezP, MarcinkowskiT, BernalJ, et al. (2013) Changes in thyroid status during perinatal development of MCT8-deficient male mice. Endocrinology 154: 2533–2541 doi:10.1210/en.2012-2031
23. TreichelD, BeckerMB, GrussP (2001) The novel transcription factor gene Sp5 exhibits a dynamic and highly restricted expression pattern during mouse embryogenesis. Mech Dev 101: 175–179.
24. FriesemaECH, JansenJ, JachtenbergJ-W, VisserWE, KesterMHA, et al. (2008) Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol Baltim Md 22: 1357–1369 doi:10.1210/me.2007-0112
25. KersseboomS, KremersG-J, FriesemaECH, VisserWE, KlootwijkW, et al. (2013) Mutations in MCT8 in patients with Allan-Herndon-Dudley-syndrome affecting its cellular distribution. Mol Endocrinol Baltim Md 27: 801–813 doi:10.1210/me.2012-1356
26. Trajkovic-ArsicM, MüllerJ, DarrasVM, GrobaC, LeeS, et al. (2010) Impact of monocarboxylate transporter-8 deficiency on the hypothalamus-pituitary-thyroid axis in mice. Endocrinology 151: 5053–5062 doi:10.1210/en.2010-0593
27. DarrasVM, Van HerckSLJ, HeijlenM, De GroefB (2011) Thyroid hormone receptors in two model species for vertebrate embryonic development: chicken and zebrafish. J Thyroid Res 2011: 402320 doi:10.4061/2011/402320
28. GikaAD, SiddiquiA, HulseAJ, EdwardS, FallonP, et al. (2010) White matter abnormalities and dystonic motor disorder associated with mutations in the SLC16A2 gene. Dev Med Child Neurol 52: 475–482 doi:10.1111/j.1469-8749.2009.03471.x
29. TondutiD, VanderverA, BerardinelliA, SchmidtJL, CollinsCD, et al. (2013) MCT8 deficiency: extrapyramidal symptoms and delayed myelination as prominent features. J Child Neurol 28: 795–800 doi:10.1177/0883073812450944
30. HoldenKR, ZuñigaOF, MayMM, SuH, MolineroMR, et al. (2005) X-linked MCT8 gene mutations: characterization of the pediatric neurologic phenotype. J Child Neurol 20: 852–857.
31. BarresBA, LazarMA, RaffMC (1994) A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Dev Camb Engl 120: 1097–1108.
32. CalzaL, FernandezM, GiulianiA, AloeL, GiardinoL (2002) Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 99: 3258–3263 doi:10.1073/pnas.052704499
33. HarsanL-A, SteibelJ, ZarembaA, AginA, SapinR, et al. (2008) Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci Off J Soc Neurosci 28: 14189–14201 doi:10.1523/JNEUROSCI.4453-08.2008
34. KnipperM, BandtlowC, GestwaL, KöpschallI, RohbockK, et al. (1998) Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Dev Camb Engl 125: 3709–3718.
35. ParkH-C, MehtaA, RichardsonJS, AppelB (2002) olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev Biol 248: 356–368.
36. PeiranoRI, GoerichDE, RiethmacherD, WegnerM (2000) Protein zero gene expression is regulated by the glial transcription factor Sox10. Mol Cell Biol 20: 3198–3209.
37. BrösamleC, HalpernME (2002) Characterization of myelination in the developing zebrafish. Glia 39: 47–57 doi:10.1002/glia.10088
38. ShineHD, ReadheadC, PopkoB, HoodL, SidmanRL (1992) Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. J Neurochem 58: 342–349.
39. JeanninE, RobyrD, DesvergneB (1998) Transcriptional regulatory patterns of the myelin basic protein and malic enzyme genes by the thyroid hormone receptors alpha1 and beta1. J Biol Chem 273: 24239–24248.
40. MarchandO, SafiR, EscrivaH, Van RompaeyE, PrunetP, et al. (2001) Molecular cloning and characterization of thyroid hormone receptors in teleost fish. J Mol Endocrinol 26: 51–65.
41. BuckleyCE, MarguerieA, AldertonWK, FranklinRJM (2010) Temporal dynamics of myelination in the zebrafish spinal cord. Glia 58: 802–812 doi:10.1002/glia.20964
42. FilippiA, JainokC, DrieverW (2012) Analysis of transcriptional codes for zebrafish dopaminergic neurons reveals essential functions of Arx and Isl1 in prethalamic dopaminergic neuron development. Dev Biol 369: 133–149 doi:10.1016/j.ydbio.2012.06.010
43. SchebestaM, SerlucaFC (2009) olig1 Expression identifies developing oligodendrocytes in zebrafish and requires hedgehog and notch signaling. Dev Dyn Off Publ Am Assoc Anat 238: 887–898 doi:10.1002/dvdy.21909
44. KazakovaN, LiH, MoraA, JessenKR, MirskyR, et al. (2006) A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol 297: 1–13 doi:10.1016/j.ydbio.2006.03.020
45. SchweitzerJ, BeckerT, BeckerCG, SchachnerM (2003) Expression of protein zero is increased in lesioned axon pathways in the central nervous system of adult zebrafish. Glia 41: 301–317 doi:10.1002/glia.10192
46. MessierN, LangloisMF (2000) Triac regulation of transcription is T(3) receptor isoform- and response element-specific. Mol Cell Endocrinol 165: 57–66.
47. VerhoevenFA, Van der PuttenHHAGM, HennemannG, LamersJMJ, VisserTJ, et al. (2002) Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs. J Endocrinol 173: 247–255.
48. HornS, KersseboomS, MayerlS, MüllerJ, GrobaC, et al. (2013) Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 154: 968–979 doi:10.1210/en.2012-1628
49. Di CosmoC, LiaoX-H, DumitrescuAM, WeissRE, RefetoffS (2009) A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport. Endocrinology 150: 4450–4458 doi:10.1210/en.2009-0209
50. VergeCF, KonradD, CohenM, Di CosmoC, DumitrescuAM, et al. (2012) Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. J Clin Endocrinol Metab 97: 4515–4523 doi:10.1210/jc.2012-2556
51. ElbazI, Yelin-BekermanL, NicenboimJ, VatineG, AppelbaumL (2012) Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J Neurosci Off J Soc Neurosci 32: 12961–12972 doi:10.1523/JNEUROSCI.1284-12.2012
52. TovinA, AlonS, Ben-MosheZ, MracekP, VatineG, et al. (2012) Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork. PLoS Genet 8: e1003116 doi:10.1371/journal.pgen.1003116
53. EmranF, RihelJ, DowlingJE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp JoVE doi:10.3791/923
54. ZhdanovaIV, WangSY, LeclairOU, DanilovaNP (2001) Melatonin promotes sleep-like state in zebrafish. Brain Res 903: 263–268.
55. ProberDA, RihelJ, OnahAA, SungR-J, SchierAF (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci Off J Soc Neurosci 26: 13400–13410 doi:10.1523/JNEUROSCI.4332-06.2006
56. YokogawaT, MarinW, FaracoJ, PézeronG, AppelbaumL, et al. (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5: e277 doi:10.1371/journal.pbio.0050277
57. ZhdanovaIV (2011) Sleep and its regulation in zebrafish. Rev Neurosci 22: 27–36 doi:10.1515/RNS.2011.005
58. ElbazI, FoulkesNS, GothilfY, AppelbaumL (2013) Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 7: 9 doi:10.3389/fncir.2013.00009
59. Campos-BarrosA, MusaA, FlechnerA, HesseniusC, GaioU, et al. (1997) Evidence for circadian variations of thyroid hormone concentrations and type II 5′-iodothyronine deiodinase activity in the rat central nervous system. J Neurochem 68: 795–803.
60. RussellW, HarrisonRF, SmithN, DarzyK, ShaletS, et al. (2008) Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab 93: 2300–2306 doi:10.1210/jc.2007-2674
61. DayaA, VatineGD, Becker-CohenM, Tal-GoldbergT, FriedmannA, et al. (2014) Gne depletion during zebrafish development impairs skeletal muscle structure and function. Hum Mol Genet 23: 3349–3361 doi:10.1093/hmg/ddu045
62. WeinbergES, AllendeML, KellyCS, AbdelhamidA, MurakamiT, et al. (1996) Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Dev Camb Engl 122: 271–280.
63. HeuerH, VisserTJ (2013) The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochim Biophys Acta 1830: 3974–3978 doi:10.1016/j.bbagen.2012.04.009
64. PaquetD, BhatR, SydowA, MandelkowE-M, BergS, et al. (2009) A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119: 1382–1395 doi:10.1172/JCI37537
65. PlucińskaG, PaquetD, HruschaA, GodinhoL, HaassC, et al. (2012) In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci Off J Soc Neurosci 32: 16203–16212 doi:10.1523/JNEUROSCI.1327-12.2012
66. WilliamsJA, BarriosA, GatchalianC, RubinL, WilsonSW, et al. (2000) Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling. Dev Biol 226: 220–230 doi:10.1006/dbio.2000.9860
67. SagastiA, GuidoMR, RaibleDW, SchierAF (2005) Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors. Curr Biol CB 15: 804–814 doi:10.1016/j.cub.2005.03.048
68. AppelbaumL, SkariahG, MourrainP, MignotE (2007) Comparative expression of p2x receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish. Brain Res 1174: 66–75 doi:10.1016/j.brainres.2007.06.103
69. WangF, WolfsonSN, GharibA, SagastiA (2012) LAR receptor tyrosine phosphatases and HSPGs guide peripheral sensory axons to the skin. Curr Biol CB 22: 373–382 doi:10.1016/j.cub.2012.01.040
70. PorterfieldSP, HendrichCE (1993) The role of thyroid hormones in prenatal and neonatal neurological development–current perspectives. Endocr Rev 14: 94–106 doi:10.1210/edrv-14-1-94
71. CayrouC, DenverRJ, PuymiratJ (2002) Suppression of the basic transcription element-binding protein in brain neuronal cultures inhibits thyroid hormone-induced neurite branching. Endocrinology 143: 2242–2249 doi:10.1210/endo.143.6.8856
72. HeuerH, MaierMK, IdenS, MittagJ, FriesemaECH, et al. (2005) The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146: 1701–1706 doi:10.1210/en.2004-1179
73. SchweizerU, KöhrleJ (2013) Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta 1830: 3965–3973 doi:10.1016/j.bbagen.2012.07.015
74. FuJ, RefetoffS, DumitrescuAM (2013) Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr Opin Endocrinol Diabetes Obes 20: 434–440 doi:10.1097/01.med.0000432531.03233.ad
75. ElsaliniOA, RohrKB (2003) Phenylthiourea disrupts thyroid function in developing zebrafish. Dev Genes Evol 212: 593–598 doi:10.1007/s00427-002-0279-3
76. KinneA, KleinauG, HoefigCS, GrütersA, KöhrleJ, et al. (2010) Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 285: 28054–28063 doi:10.1074/jbc.M110.129577
77. SijensPE, RödigerLA, MeinersLC, LunsingRJ (2008) 1H magnetic resonance spectroscopy in monocarboxylate transporter 8 gene deficiency. J Clin Endocrinol Metab 93: 1854–1859 doi:10.1210/jc.2007-2441
78. NambaN, EtaniY, KitaokaT, NakamotoY, NakachoM, et al. (2008) Clinical phenotype and endocrinological investigations in a patient with a mutation in the MCT8 thyroid hormone transporter. Eur J Pediatr 167: 785–791 doi:10.1007/s00431-007-0589-6
79. HartlineDK, ColmanDR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol CB 17: R29–35 doi:10.1016/j.cub.2006.11.042
80. MussaGC, MussaF, BrettoR, ZambelliMC, SilvestroL (2001) Influence of thyroid in nervous system growth. Minerva Pediatr 53: 325–353.
81. DugasJC, IbrahimA, BarresBA (2012) The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration. Mol Cell Neurosci 50: 45–57 doi:10.1016/j.mcn.2012.03.007
82. BernalJ (2011) Thyroid hormone transport in developing brain. Curr Opin Endocrinol Diabetes Obes 18: 295–299 doi:10.1097/MED.0b013e32834a78b3
83. Rodriguez-PeñaA, IbarrolaN, IñiguezMA, MuñozA, BernalJ (1993) Neonatal hypothyroidism affects the timely expression of myelin-associated glycoprotein in the rat brain. J Clin Invest 91: 812–818 doi:10.1172/JCI116301
84. BernalJ, Guadaño-FerrazA, MorteB (2003) Perspectives in the study of thyroid hormone action on brain development and function. Thyroid Off J Am Thyroid Assoc 13: 1005–1012 doi:10.1089/105072503770867174
85. ShermanDL, BrophyPJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6: 683–690 doi:10.1038/nrn1743
86. SimpsonHD, KitaEM, ScottEK, GoodhillGJ (2013) A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. J Comp Neurol 521: 1409–1429 doi:10.1002/cne.23248
87. BedellVM, WestcotSE, EkkerSC (2011) Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 10: 181–188 doi:10.1093/bfgp/elr021
88. NikolaouN, MeyerMP (2012) Imaging circuit formation in zebrafish. Dev Neurobiol 72: 346–357 doi:10.1002/dneu.20874
89. KarlstromRO, TroweT, KlostermannS, BaierH, BrandM, et al. (1996) Zebrafish mutations affecting retinotectal axon pathfinding. Dev Camb Engl 123: 427–438.
90. BocconeL, DessìV, MeloniA, LoudianosG (2013) Allan-Herndon-Dudley syndrome (AHDS) in two consecutive generations caused by a missense MCT8 gene mutation. Phenotypic variability with the presence of normal serum T3 levels. Eur J Med Genet 56: 207–210 doi:10.1016/j.ejmg.2013.02.001
91. Van SpronsenM, HoogenraadCC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10: 207–214 doi:10.1007/s11910-010-0104-8
92. WondolowskiJ, DickmanD (2013) Emerging links between homeostatic synaptic plasticity and neurological disease. Front Cell Neurosci 7: 223 doi:10.3389/fncel.2013.00223
93. VincentJ, LegrandC, RabiéA, LegrandJ (1982) Effects of thyroid hormone on synaptogenesis in the molecular layer of the developing rat cerebellum. J Physiol (Paris) 78: 729–738.
94. NunezJ, CeliFS, NgL, ForrestD (2008) Multigenic control of thyroid hormone functions in the nervous system. Mol Cell Endocrinol 287: 1–12 doi:10.1016/j.mce.2008.03.006
95. LewisKE, EisenJS (2003) From cells to circuits: development of the zebrafish spinal cord. Prog Neurobiol 69: 419–449.
96. TaborKM, BergeronSA, HorstickEJ, JordanDC, AhoV, et al. (2014) Direct activation of the Mauthner cell by electric field pulses drives ultra-rapid escape responses. J Neurophysiol doi:10.1152/jn.00228.2014
97. AppelbaumL, WangGX, MaroGS, MoriR, TovinA, et al. (2009) Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish. Proc Natl Acad Sci U S A 106: 21942–21947 doi:10.1073/pnas.906637106
98. GajT, GersbachCA, BarbasCF3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31: 397–405 doi:10.1016/j.tibtech.2013.04.004
99. MayerlS, MüllerJ, BauerR, RichertS, KassmannCM, et al. (2014) Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 124: 1987–1999 doi:10.1172/JCI70324
100. KawakamiK, TakedaH, KawakamiN, KobayashiM, MatsudaN, et al. (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7: 133–144 doi:10.1016/j.devcel.2004.06.005
101. AppelbaumL, ToyamaR, DawidIB, KleinDC, BalerR, et al. (2004) Zebrafish serotonin-N-acetyltransferase-2 gene regulation: pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. Mol Endocrinol Baltim Md 18: 1210–1221 doi:10.1210/me.2003-0439
102. ShinJ, ParkH-C, TopczewskaJM, MawdsleyDJ, AppelB (2003) Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci Off J Soc Vitro Biol 25: 7–14 doi:10.1023/B:MICS.0000006847.09037.3a
103. YoshidaM, MacklinWB (2005) Oligodendrocyte development and myelination in GFP-transgenic zebrafish. J Neurosci Res 81: 1–8 doi:10.1002/jnr.20516
104. JungS-H, KimS, ChungA-Y, KimH-T, SoJ-H, et al. (2010) Visualization of myelination in GFP-transgenic zebrafish. Dev Dyn Off Publ Am Assoc Anat 239: 592–597 doi:10.1002/dvdy.22166
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 9
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals
- Nipbl and Mediator Cooperatively Regulate Gene Expression to Control Limb Development
- Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel
- Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation