Requirement for Drosophila SNMP1 for Rapid Activation and Termination of Pheromone-Induced Activity
Pheromones are chemicals produced and released by animals for social communication with other members of their species. For example, male fruit flies produce a volatile pheromone that is sensed by both males and females, and which functions in gender recognition. This volatile male pheromone, called 11-cis vaccenyl acetate, is detected by olfactory neurons housed in hair-like appendages on the insect antenna. To effectively sense the pheromone, especially during navigation, the olfactory neurons must respond rapidly, and then quickly inactivate after the stimulation ceases. We found that a CD36-related protein referred to as sensory neuron membrane protein 1 (SNMP1) was required by olfactory neurons for the rapid on and off responses to 11-cis vaccenyl acetate. Loss of SNMP1 reduced the initial sensitivity to the pheromone, and then caused a strikingly slower termination of the response after removal of the pheromone. Our findings demonstrate that SNMP1 is a critical player that allows olfactory neurons to achieve sensitive and rapid on and off responses to a pheromone that is critical for social interactions in insects.
Vyšlo v časopise:
Requirement for Drosophila SNMP1 for Rapid Activation and Termination of Pheromone-Induced Activity. PLoS Genet 10(9): e32767. doi:10.1371/journal.pgen.1004600
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004600
Souhrn
Pheromones are chemicals produced and released by animals for social communication with other members of their species. For example, male fruit flies produce a volatile pheromone that is sensed by both males and females, and which functions in gender recognition. This volatile male pheromone, called 11-cis vaccenyl acetate, is detected by olfactory neurons housed in hair-like appendages on the insect antenna. To effectively sense the pheromone, especially during navigation, the olfactory neurons must respond rapidly, and then quickly inactivate after the stimulation ceases. We found that a CD36-related protein referred to as sensory neuron membrane protein 1 (SNMP1) was required by olfactory neurons for the rapid on and off responses to 11-cis vaccenyl acetate. Loss of SNMP1 reduced the initial sensitivity to the pheromone, and then caused a strikingly slower termination of the response after removal of the pheromone. Our findings demonstrate that SNMP1 is a critical player that allows olfactory neurons to achieve sensitive and rapid on and off responses to a pheromone that is critical for social interactions in insects.
Zdroje
1. Brennan PA (2010) Pheromones and Mammalian Behavior. In: Menini A, editor. The Neurobiology of Olfaction. Boca Raton (FL).
2. FernándezMP, KravitzEA (2013) Aggression and courtship in Drosophila: pheromonal communication and sex recognition. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199: 1065–1076.
3. Gomez-DiazC, BentonR (2013) The joy of sex pheromones. EMBO Rep 14: 874–883.
4. ButenandtA, BeckmannR, HeckerE (1961) On the sexattractant of silk-moths. I. The biological test and the isolation of the pure sex-attractant bombykol. Hoppe Seylers Z Physiol Chem 324: 71–83.
5. Kaissling KE (2014) Pheromone reception in insects: The example of silk moths. In: Mucignat-Caretta C, editor. Neurobiology of Chemical Communication. Boca Raton (FL).
6. SakuraiT, NamikiS, KanzakiR (2014) Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth. Front Physiol 5: 125.
7. HowardRW, BlomquistGJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50: 371–393.
8. ButterworthFM (1969) Lipids of Drosophila: a newly detected lipid in the male. Science 163: 1356–1357.
9. FerveurJF (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35: 279–295.
10. ClyneP, GrantA, O'ConnellR, CarlsonJR (1997) Odorant response of individual sensilla on the Drosophila antenna. Invert Neurosci 3: 127–135.
11. BentonR (2007) Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci 30: 512–519.
12. VosshallLB (2008) Scent of a fly. Neuron 59: 685–689.
13. WangL, AndersonDJ (2010) Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463: 227–231.
14. KurtovicA, WidmerA, DicksonBJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446: 542–546.
15. BarteltRJ, SchanerAM, JacksonLL (1985) cis-vaccenyl acetate as an aggregationpheromone in Drosophila melanogaster. J Chem Ecol 11: 1747–1756.
16. ClynePJ, WarrCG, FreemanMR, LessingD, KimJ, et al. (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: 327–338.
17. VosshallLB, WongAM, AxelR (2000) An olfactory sensory map in the fly brain. Cell 102: 147–159.
18. GaoQ, ChessA (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60: 31–39.
19. BentonR, SachseS, MichnickSW, VosshallLB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4: e20.
20. NeuhausEM, GisselmannG, ZhangW, DooleyR, StortkuhlK, et al. (2005) Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 8: 15–17.
21. LarssonMC, DomingosAI, JonesWD, ChiappeME, AmreinH, et al. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43: 703–714.
22. LealWS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58: 373–391.
23. VogtRG, RiddifordLM (1981) Pheromone binding and inactivation by moth antennae. Nature 293: 161–163.
24. XuP, AtkinsonR, JonesDN, SmithDP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45: 193–200.
25. LaughlinJD, HaTS, JonesDN, SmithDP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133: 1255–1265.
26. Gomez-DiazC, ReinaJH, CambillauC, BentonR (2013) Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol 11: e1001546.
27. BentonR, VanniceKS, VosshallLB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450: 289–293.
28. JinX, HaTS, SmithDP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci USA 105: 10996–11001.
29. van der Goes van NatersW, CarlsonJR (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17: 606–612.
30. SyedZ, KoppA, KimbrellDA, LealWS (2010) Bombykol receptors in the silkworm moth and the fruit fly. Proc Natl Acad Sci USA 107: 9436–9439.
31. SatoK, PellegrinoM, NakagawaT, NakagawaT, VosshallLB, et al. (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002–1006.
32. MurlisJ, WillisMA, CardeRT (2000) Spatial and temporal structures of pheromone plumes in fields and forests. Physiol Entomol 25: 211–222.
33. IshidaY, LealWS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA 102: 14075–14079.
34. SyedZ, IshidaY, TaylorK, KimbrellDA, LealWS (2006) Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc Natl Acad Sci USA 103: 16538–16543.
35. KaisslingKE (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26: 125–150.
36. LiuYC, PearceMW, HondaT, JohnsonTK, CharluS, et al. (2014) The Drosophila melanogaster phospholipid flippase dATP8B is required for odorant receptor function. PLOS Genet 10: e1004209.
37. HaTS, XiaR, ZhangH, JinX, SmithDP (2014) Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila. Proc Natl Acad Sci USA 111: 7831–7836.
38. XuP, HooperAM, PickettJA, LealWS (2012) Specificity determinants of the silkworm moth sex pheromone. PLoS One 7: e44190.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 9
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals
- Nipbl and Mediator Cooperatively Regulate Gene Expression to Control Limb Development
- Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel
- Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation