Hidden Diversity in Honey Bee Gut Symbionts Detected by Single-Cell Genomics
Gut microbial communities are often complex, consisting of bacteria from divergent phyla as well as multiple strains of each of the constituent species. But because the composition of these communities is typically assessed using 16S rRNA analyses, little is known about genomic changes associated with in situ diversification of bacterial lineages in animal guts. We undertook a single-cell genomic approach to investigate the diversification within two species of the gut microbiota of honey bees. Each species exhibited a surprisingly high level of genomic variation, despite uniformity in the 16S rRNA sequences. Our data indicate that genetically and ecologically distinct lineages can evolve in the gut of the same host species in the presence of frequent recombination at 16S rRNA genes. These findings parallel observations from mammals, suggesting that in situ diversification of a few bacterial lineages is a common pattern in the evolution of gut communities.
Vyšlo v časopise:
Hidden Diversity in Honey Bee Gut Symbionts Detected by Single-Cell Genomics. PLoS Genet 10(9): e32767. doi:10.1371/journal.pgen.1004596
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004596
Souhrn
Gut microbial communities are often complex, consisting of bacteria from divergent phyla as well as multiple strains of each of the constituent species. But because the composition of these communities is typically assessed using 16S rRNA analyses, little is known about genomic changes associated with in situ diversification of bacterial lineages in animal guts. We undertook a single-cell genomic approach to investigate the diversification within two species of the gut microbiota of honey bees. Each species exhibited a surprisingly high level of genomic variation, despite uniformity in the 16S rRNA sequences. Our data indicate that genetically and ecologically distinct lineages can evolve in the gut of the same host species in the presence of frequent recombination at 16S rRNA genes. These findings parallel observations from mammals, suggesting that in situ diversification of a few bacterial lineages is a common pattern in the evolution of gut communities.
Zdroje
1. MorganXC, SegataN, HuttenhowerC (2013) Biodiversity and functional genomics in the human microbiome. Trends Genet 29: 51–58.
2. SommerF, BäckhedF (2013) The gut microbiota - masters of host development and physiology. Nat Rev Microbiol 11: 227–238.
3. LeyRE, PetersonDA, GordonJI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837–848.
4. CaporasoJG, LauberCL, WaltersWA, Berg-LyonsD, LozuponeCA, et al. (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108 (Suppl 1) 4516–4522.
5. AnderssonAF, LindbergM, JakobssonH, BäckhedF, NyrénP, et al. (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3: e2836.
6. ClaessonMJ, JefferyIB, CondeS, PowerSE, O'ConnorEM, et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184.
7. LeyRE, HamadyM, LozuponeC, TurnbaughPJ, RameyRR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647–1651.
8. TurnbaughPJ, RidauraVK, FaithJJ, ReyFE, KnightR, et al. (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1: 6ra14.
9. TurnbaughPJ, HamadyM, YatsunenkoT, CantarelBL, DuncanA, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484.
10. MiraA, OchmanH (2002) Gene location and bacterial sequence divergence. Mol Biol Evol 19: 1350–1358.
11. TouchonM, HoedeC, TenaillonO, BarbeV, BaeriswylS, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS genetics 5: e1000344.
12. TettelinH, MasignaniV, CieslewiczMJ, DonatiC, MediniD, et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome.”. Proc Natl Acad Sci USA 102: 13950–13955.
13. EngelP, MoranNA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37: 699–735.
14. KochH, Schmid-HempelP (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62: 121–133.
15. AhnJ-H, HongI-P, BokJ-I, KimB-Y, SongJ, et al. (2012) Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J Microbiol 50: 735–745.
16. MartinsonVG, DanforthBN, MinckleyRL, RueppellO, TingekS, et al. (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20: 619–628.
17. MohrKI, TebbeCC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8: 258–272.
18. BabendreierD, JollerD, RomeisJ, BiglerF, WidmerF (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 59: 600–610.
19. JeyaprakashA, HoyMA, AllsoppMH (2003) Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 84: 96–103.
20. MoranNA, HansenAK, PowellJE, SabreeZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE 7: e36393.
21. Cox-FosterDL, ConlanS, HolmesEC, PalaciosG, EvansJD, et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–287.
22. EngelP, MartinsonVG, MoranNA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109: 11002–11007.
23. CariveauDP, PowellJE, KochH, WinfreeR, MoranNA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J Epub ahead of print. doi:10.1038/ismej.2014.68
24. CameronSA, LozierJD, StrangeJP, KochJB, CordesN, et al. (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108: 662–667.
25. vanEngelsdorpD, EvansJD, SaegermanC, MullinC, HaubrugeE, et al. (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4: e6481.
26. BauerDM, WingIS (2010) Economic consequences of pollinator declines: a synthesis. Agr Resource Econ Rev 39: 368–383.
27. KwongWK, MoranNA (2012) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: Snodgrassella alvi gen. nov., sp. nov., a member of the Neisseriaceae family of the Betaproteobacteria; and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the Enterobacteriales order of the Gammaproteobacteria. Int J Syst Evol Microbiol 63: 2008–2018.
28. KwongWK, EngelP, KochH, MoranNA (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci USA 111: 11509–11514.
29. EngelP, KwongWK, MoranNA (2013) Frischella perrara gen. nov., sp. nov., a Gammaproteobacterium isolated from the gut of the honey bee, Apis mellifera. Int J Syst Evol Microbiol 63: 3646–51.
30. BankevichA, NurkS, AntipovD, GurevichAA, DvorkinM, et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477.
31. KircherM, SawyerS, MeyerM (2012) Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40: e3.
32. WoykeT, XieG, CopelandA, GonzálezJM, HanC, et al. (2009) Assembling the marine metagenome, one cell at a time. PLoS ONE 4: e5299.
33. WoykeT, SczyrbaA, LeeJ, RinkeC, TigheD, et al. (2011) Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6: e26161.
34. DeitschKW, MoxonER, WellemsTE (1997) Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev 61: 281–293.
35. SwanBK, TupperB, SczyrbaA, LauroFM, Martinez-GarciaM, et al. (2013) Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA 110: 11463–11468.
36. MuniesaM, BlanchAR, LucenaF, JofreJ (2005) Bacteriophages may bias outcome of bacterial enrichment cultures. Appl Environ Microbiol 71: 4269–4275.
37. HarderW, DijkhuizenL (1982) Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond, B, Biol Sci 297: 459–480.
38. LloydKG, SchreiberL, PetersenDG, KjeldsenKU, LeverMA, et al. (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496: 215–218.
39. LangridgeGC, PhanM-D, TurnerDJ, PerkinsTT, PartsL, et al. (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19: 2308–2316.
40. MartinsonVG, MoyJ, MoranNA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78: 2830–2840.
41. StepanauskasR (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15: 613–620.
42. LaskenRS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10: 631–640.
43. McLeanJS, LombardoM-J, BadgerJH, EdlundA, NovotnyM, et al. (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 110: E2390–E2399.
44. Martinez-GarciaM, SwanBK, PoultonNJ, GomezML, MaslandD, et al. (2012) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6: 113–123.
45. RinkeC, SchwientekP, SczyrbaA, IvanovaNN, AndersonIJ, et al. (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431–437.
46. WasmundK, SchreiberL, LloydKG, PetersenDG, SchrammA, et al. (2014) Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J 8: 383–397.
47. CampbellAG, CampbellJH, SchwientekP, WoykeT, SczyrbaA, et al. (2013) Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity. PLoS ONE 8: e59361.
48. IversonV, MorrisRM, FrazarCD, BerthiaumeCT, MoralesRL, et al. (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335: 587–590.
49. MorowitzMJ, DenefVJ, CostelloEK, ThomasBC, PoroykoV, et al. (2011) Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc Natl Acad Sci USA 108: 1128–1133.
50. SloanDB, BennettGM, EngelP, WilliamsD, OchmanH (2013) Disentangling Associated Genomes. Method Enzymol 531: 445–464.
51. AlbertsenM, HugenholtzP, SkarshewskiA, NielsenKL, TysonGW, et al. (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31: 533–538.
52. WiedenbeckJ, CohanFM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35: 957–976.
53. KonstantinidisKT, RametteA, TiedjeJM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361: 1929–1940.
54. LawrenceJG, RetchlessAC (2009) The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol Biol 532: 29–53.
55. StackebrandtE, GoebelBM (1994) Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44: 846–849.
56. WelchRA, BurlandV, PlunkettG, RedfordP, RoeschP, et al. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99: 17020–17024.
57. WhittamTS, BumbaughAC (2002) Inferences from whole-genome sequences of bacterial pathogens. Curr Opin Genet Dev 12: 719–725.
58. OchmanH, ElwynS, MoranNA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci USA 96: 12638–12643.
59. BurneRA, ChenY-YM (2000) Bacterial ureases in infectious diseases. Microbes and Infection 2: 533–542.
60. CohanFM (2001) Bacterial species and speciation. Syst Biol 50: 513–524.
61. CornmanRS, TarpyDR, ChenY, JeffreysL, LopezD, et al. (2012) Pathogen webs in collapsing honey bee colonies. PLoS ONE 7: e43562.
62. KochH, Schmid-HempelP, JaenikeJ (2012) Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol Lett 15: 1095–1103.
63. CardinalS, StrakaJ, DanforthBN (2010) Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proc Natl Acad Sci USA 107: 16207–16211.
64. KochH, AbrolDP, LiJ, Schmid-HempelP (2013) Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 22: 2028–2044.
65. ChastonJM, MurfinKE, Heath-HeckmanEA, Goodrich-BlairH (2013) Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes. Cell Microbiol 15: 1545–1559.
66. FreseSA, BensonAK, TannockGW, LoachDM, KimJ, et al. (2011) The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS genetics 7: e1001314.
67. OhPL, BensonAK, PetersonDA, PatilPB, MoriyamaEN, et al. (2010) Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4: 377–387.
68. OchmanH, WorobeyM, KuoC-H, NdjangoJ-BN, PeetersM, et al. (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8: e1000546.
69. EckburgPB, BikEM, BernsteinCN, PurdomE, DethlefsenL, et al. (2005) Diversity of the human intestinal microbial flora. Science 308: 1635–1638.
70. FaithJJ, GurugeJL, CharbonneauM, SubramanianS, SeedorfH, et al. (2013) The long-term stability of the human gut microbiota. Science 341: 1237439.
71. SchloissnigS, ArumugamM, SunagawaS, MitrevaM, TapJ, et al. (2013) Genomic variation landscape of the human gut microbiome. Nature 493: 45–50.
72. ThomasCM, NielsenKM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3: 711–721.
73. Cadillo-QuirozH, DidelotX, HeldNL, HerreraA, DarlingA, et al. (2012) Patterns of gene flow define species of thermophilic Archaea. PLoS Biol 10: e1001265.
74. ShapiroBJ, FriedmanJ, CorderoOX, PreheimSP, TimberlakeSC, et al. (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336: 48–51.
75. SwanBK, Martinez-GarciaM, PrestonCM, SczyrbaA, WoykeT, et al. (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333: 1296–1300.
76. NikolenkoSI, KorobeynikovAI, AlekseyevMA (2013) BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14 (Suppl 1) S7.
77. ChitsazH, Yee-GreenbaumJL, TeslerG, LombardoM-J, DupontCL, et al. (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol 29: 915–921.
78. LiR, YuC, LiY, LamT-W, YiuS-M, et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: 1966–1967.
79. MarkowitzVM, IvanovaNN, SzetoE, PalaniappanK, ChuK, et al. (2007) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36: D534–D538.
80. LiL, StoeckertCJ, RoosDS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189.
81. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
82. GuindonS, DufayardJ-F, LefortV, AnisimovaM, HordijkW, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
83. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
84. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.
85. DarribaD, TaboadaGL, DoalloR, PosadaD (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772.
86. SukumaranJ, HolderMT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26: 1569–1571.
87. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
88. LibradoP, RozasJ (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.
89. YangZ (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
90. EllegaardKM, KlassonL, NäslundK, BourtzisK, AnderssonSGE (2013) Comparative genomics of Wolbachia and the bacterial species concept. PLoS genetics 9: e1003381.
91. GuyL, NystedtB, SunY, NäslundK, BerglundEC, et al. (2012) A genome-wide study of recombination rate variation in Bartonella henselae. BMC Evol Biol 12: 65.
92. KlassonL, WestbergJ, SapountzisP, NäslundK, LutnaesY, et al. (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 106: 5725–5730.
93. DrayS, DufourAB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22: 1–20.
94. DidelotX, FalushD (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175: 1251–1266.
95. DidelotX, BowdenR, StreetT, GolubchikT, SpencerC, et al. (2011) Recombination and population structure in Salmonella enterica. PLoS genetics 7: e1002191.
96. Sawyer SA (1999) GENECONV: a computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University. Available: http://www.math.wustl.edu/~sawyer.
97. GilR, SilvaFJ, PeretóJ, MoyaA (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68: 518–37.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals
- Nipbl and Mediator Cooperatively Regulate Gene Expression to Control Limb Development
- Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel
- Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation