Hydroxymethylated Cytosines Are Associated with Elevated C to G Transversion Rates
Most cytosines that occur in a CpG context in mammalian genomes are methylated. Methylation has important functional consequences in the cell but also affects genome evolution. Notably, methylated cytosines are prone to deaminate and constitute mutational hotspots in mammalian genomes. Recently, a series of other modifications, derived from the oxidation of methylated cytosines, was shown to exist in various mammalian cell types including embryonic stem cells. The most abundant of these modifications is 5-hydroxymethylcytosine. In this work, we ask whether methylated and hydroxymethylated cytosines are subject to the same mutational biases or lead to distinct patterns of genome evolution. To do so, we examine differences between individuals, between species, and between normal and cancer tissues alongside high-resolution maps of DNA methylation and hydroxymethylation in the human and mouse genomes. Unexpectedly, we find that hydroxymethylated cytosines are associated with more cytosine to guanine changes in both human and mouse populations, in closely related species, and in the context of somatic evolution in tumors. Based on multiple lines of evidence, we suggest that the different patterns of sequence evolution at methylated and hydroxymethylated sites are owing to differences in how these sites are handled by the DNA repair machinery.
Vyšlo v časopise:
Hydroxymethylated Cytosines Are Associated with Elevated C to G Transversion Rates. PLoS Genet 10(9): e32767. doi:10.1371/journal.pgen.1004585
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004585
Souhrn
Most cytosines that occur in a CpG context in mammalian genomes are methylated. Methylation has important functional consequences in the cell but also affects genome evolution. Notably, methylated cytosines are prone to deaminate and constitute mutational hotspots in mammalian genomes. Recently, a series of other modifications, derived from the oxidation of methylated cytosines, was shown to exist in various mammalian cell types including embryonic stem cells. The most abundant of these modifications is 5-hydroxymethylcytosine. In this work, we ask whether methylated and hydroxymethylated cytosines are subject to the same mutational biases or lead to distinct patterns of genome evolution. To do so, we examine differences between individuals, between species, and between normal and cancer tissues alongside high-resolution maps of DNA methylation and hydroxymethylation in the human and mouse genomes. Unexpectedly, we find that hydroxymethylated cytosines are associated with more cytosine to guanine changes in both human and mouse populations, in closely related species, and in the context of somatic evolution in tumors. Based on multiple lines of evidence, we suggest that the different patterns of sequence evolution at methylated and hydroxymethylated sites are owing to differences in how these sites are handled by the DNA repair machinery.
Zdroje
1. LutsenkoE, BhagwatAS (1999) Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. Mutation Research/Reviews in Mutation Research 437: 11–20 doi:10.1016/S1383-5742(99)00065-4
2. XiaJ, HanL, ZhaoZ (2012) Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics 13 (Suppl 8) S7 doi:10.1186/1471-2164-13-S8-S7
3. ElangoN, KimS-H, ProgramNCS, VigodaE, YiSV (2008) Mutations of Different Molecular Origins Exhibit Contrasting Patterns of Regional Substitution Rate Variation. PLoS Comput Biol 4: e1000015 doi:10.1371/journal.pcbi.1000015
4. MolaroA, HodgesE, FangF, SongQ, McCombieWR, et al. (2012) Sperm Methylation Profiles Reveal Features of Epigenetic Inheritance and Evolution in Primates. Cell 146: 1029–1041 doi:10.1016/j.cell.2011.08.016
5. JiangC, ZhaoZ (2006) Directionality of point mutation and 5-methylcytosine deamination rates in the chimpanzee genome. BMC Genomics 7: 316 doi:10.1186/1471-2164-7-316
6. FryxellKJ, ZuckerkandlE (2000) Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol Biol Evol 17: 1371–1383 doi:10.1146/annurev.ge.23.120189.003225
7. AlexandrovLB, Nik-ZainalS, WedgeDC, AparicioSAJR, BehjatiS, et al. (2013) Signatures of mutational processes in human cancer. Nature 500: 415–421 doi:10.1038/nature12477
8. KriaucionisS, HeintzN (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324: 929–930 doi:10.1126/science.1169786
9. TahilianiM, KohKP, ShenY, PastorWA, BandukwalaH, et al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324: 930–935 doi:10.1126/science.1170116
10. SongC-X, HeC (2013) Potential functional roles of DNA demethylation intermediates. Trends in Biochemical Sciences 38: 480–484 doi:10.1016/j.tibs.2013.07.003
11. SeisenbergerS, AndrewsS, KruegerF, ArandJ, WalterJ, et al. (2012) The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells. Molecular Cell 48: 849–862 doi:10.1016/j.molcel.2012.11.001
12. WuH, ZhangY (2014) Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions. Cell 156: 45–68 doi:10.1016/j.cell.2013.12.019
13. CortellinoS, XuJ, SannaiM, MooreR, CarettiE, et al. (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146: 67–79 doi:10.1016/j.cell.2011.06.020
14. StadlerMB, MurrR, BurgerL, IvanekR, LienertF, et al. (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480: 490–495 doi:10.1038/nature10716
15. YuM, HonGC, SzulwachKE, SongC-X, ZhangL, et al. (2012) Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome. Cell 149: 1368–1380 doi:10.1016/j.cell.2012.04.027
16. ListerR, PelizzolaM, DowenRH, HawkinsRD, HonG, et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315–322 doi:10.1038/nature08514
17. ListerR, MukamelEA, NeryJR, UrichM, PuddifootCA, et al. (2013) Global Epigenomic Reconfiguration During Mammalian Brain Development. Science 341: 1237905–1237905 doi:10.1126/science.1237905
18. BoothMJ, BrancoMR, FiczG, OxleyD, KruegerF, et al. (2012) Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution. Science 336: 934–937 doi:10.1126/science.1220671
19. WangT, WuH, LiY, SzulwachKE, LinL, et al. (2013) Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. Nat Cell Biol 15: 700–711 doi:10.1038/ncb2748
20. SunZ, TerragniJ, BorgaroJG, LiuY, YuL, et al. (2013) High-Resolution Enzymatic Mapping of Genomic 5-Hydroxymethylcytosine in Mouse Embryonic Stem Cells. Current Biology 3: 567–576 doi:10.1016/j.celrep.2013.01.001
21. HahnMA, QiuR, WuX, LiAX, ZhangH, et al. (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. CellReports 3: 291–300 doi:10.1016/j.celrep.2013.01.011
22. MellénM, AyataP, DewellS, KriaucionisS, HeintzN (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151: 1417–1430 doi:10.1016/j.cell.2012.11.022
23. CohenNM, KenigsbergE, TanayA (2011) Primate CpG Islands Are Maintained by Heterogeneous Evolutionary Regimes Involving Minimal Selection. Cell 145: 773–786 doi:10.1016/j.cell.2011.04.024
24. FryxellKJ (2004) CpG Mutation Rates in the Human Genome Are Highly Dependent on Local GC Content. Mol Biol Evol 22: 650–658 doi:10.1093/molbev/msi043
25. WilliamsK, ChristensenJ, PedersenMT, JohansenJV, CloosPAC, et al. (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473: 343–348 doi:10.1038/nature10066
26. McBrideTJ, PrestonBD, LoebLA (1991) Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry 30: 207–213.
27. GanH, WenL, LiaoS, LinX, MaT, et al. (2013) Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nature Communications 4: 1995 doi:10.1038/ncomms2995
28. HuangY, ChavezL, ChangX, WangX, PastorWA, et al. (2014) Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proceedings of the National Academy of Sciences 111: 1361–1366 doi:10.1073/pnas.1322921111
29. RobertsSA, LawrenceMS, KlimczakLJ, GrimmSA, FargoD, et al. (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45: 1–8 doi:10.1038/ng.2702
30. WuH, D'AlessioAC, ItoS, XiaK, WangZ, et al. (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473: 389–393 doi:10.1038/nature09934
31. WuH, ZhangY (2011) Tet1 and 5-hydroxymethylation: A genome-wide view in mouse embryonic stem cells. Cell Cycle 10: 2428–2436 doi:10.4161/cc.10.15.16930
32. SongC-X, SzulwachKE, DaiQ, FuY, MaoS-Q, et al. (2013) Genome-wide Profiling of 5-Formylcytosine Reveals Its Roles in Epigenetic Priming. Cell 153: 678–691 doi:10.1016/j.cell.2013.04.001
33. BoothMJ, MarsicoG, BachmanM, BeraldiD, BalasubramanianS (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nature Chemistry 6: 435–440 doi:10.1038/nchem.1893
34. WangL, ZhangJ, DuanJ, GaoX, ZhuW, et al. (2014) Programming and Inheritance of Parental DNA Methylomes in Mammals. Cell 157: 979–991 doi:10.1016/j.cell.2014.04.017
35. HashimotoH, PaisJE, ZhangX, SalehL, FuZ-Q, et al. (2013) Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506: 391–395 doi:10.1038/nature12905
36. BjellandS (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 531: 37–80 doi:10.1016/j.mrfmmm.2003.07.002
37. MünzelM, LischkeU, StathisD, PfaffenederT, GnerlichFA, et al. (2011) Improved Synthesis and Mutagenicity of Oligonucleotides Containing 5-Hydroxymethylcytosine, 5-Formylcytosine and 5-Carboxylcytosine. Chemistry - A European Journal 17: 13782–13788 doi:10.1002/chem.201102782
38. XingX-W, LiuY-L, VargasM, WangY, FengY-Q, et al. (2013) Mutagenic and Cytotoxic Properties of Oxidation Products of 5-Methylcytosine Revealed by Next-Generation Sequencing. PLoS ONE 8: e72993 doi:10.1371/journal.pone.0072993
39. ShibutaniT, ItoS, TodaM, KanaoR, CollinsLB, et al. (2014) Guanine- 5-carboxylcytosine base pairs mimic mismatches during DNA replication. Scientific Reports 4 doi:10.1038/srep05220
40. RenciukD, BlacqueO, VorlickovaM, SpinglerB (2013) Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine. Nucleic Acids Research 41: 9891–9900 doi:10.1093/nar/gkt738
41. IyerRR, PluciennikA, BurdettV, ModrichPL (2006) DNA Mismatch Repair: Functions and Mechanisms. Chem Rev 106: 302–323 doi:10.1021/cr0404794
42. GrigeraF, BellacosaA, KenterAL (2013) Complex Relationship between Mismatch Repair Proteins and MBD4 during Immunoglobulin Class Switch Recombination. PLoS ONE 8: e78370 doi:10.1371/journal.pone.0078370
43. CortellinoS, TurnerD, MasciulloV, SchepisF, AlbinoD, et al. (2003) The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proceedings of the National Academy of Sciences of the United States of America 100: 15071–15076 doi:10.1073/pnas.2334585100
44. BellacosaA, CicchillittiL, SchepisF, RiccioA, YeungAT, et al. (1999) MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proceedings of the National Academy of Sciences 96: 3969–3974 doi:10.1073/pnas.96.7.3969
45. SpruijtCG, GnerlichF, SmitsAH, PfaffenederT, JansenPWTC, et al. (2013) Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives. Cell 152: 1146–1159 doi:10.1016/j.cell.2013.02.004
46. WarrenJJ, PohlhausTJ, ChangelaA, IyerRR, ModrichPL, et al. (2007) Structure of the Human MutSα DNA Lesion Recognition Complex. Molecular Cell 26: 579–592 doi:10.1016/j.molcel.2007.04.018
47. IurlaroM, FiczG, OxleyD, RaiberE-A, BachmanM, et al. (2013) A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 14: R119 doi:10.1186/gb-2013-14-10-r119
48. KrijgerPHL, LangerakP, van den BerkPCM, JacobsH (2009) Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation. Journal of Experimental Medicine 206: 2603–2611 doi:10.1084/jem.20091707
49. KrijgerPH, Tsaalbi ShtylikA, WitN, Berk denPCM, WindN, et al. (2013) Rev1 is essential in generating G to C transversions downstream of the Ung2 pathway but not the Msh2+Ung2 hybrid pathway. European Journal of Immunology 43: 2765–2770 doi:10.1002/eji.201243191
50. WilsonTM, VaismanA, MartomoSA, SullivanP, LanL, et al. (2005) MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. J Exp Med 201: 637–645 doi:10.1084/jem.20042066
51. 1000 Genomes Project Consortium (2012) AbecasisGR, AutonA, BrooksLD, DePristoMA, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65 doi:10.1038/nature11632
52. KasprzykA (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011: bar049 doi:10.1093/database/bar049
53. FujitaPA, RheadB, ZweigAS, HinrichsAS, KarolchikD, et al. (2010) The UCSC Genome Browser database: update 2011. Nucleic Acids Research 39: gkq963–D882 doi:10.1093/nar/gkq963
54. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74 doi:10.1038/nature11247
55. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 doi:10.1093/bioinformatics/btp352
56. KeaneTM, GoodstadtL, DanecekP, WhiteMA, WongK, et al. (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289–294 doi:10.1038/nature10413
57. GuénetJL (2005) The mouse genome. Genome Research 15: 1729–1740 doi:10.1101/gr.3728305
58. Schuster-BöcklerB, LehnerB (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488: 504–507 doi:10.1038/nature11273
59. ErnstJ, KellisM (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nature Biotechnology 28: 817–825 doi:10.1038/nbt.1662
60. MikkelsenTS, KuM, JaffeDB, IssacB, LiebermanE, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560 doi:10.1038/nature06008
61. MeissnerA, MikkelsenTS, GuH, WernigM, HannaJ, et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766–770 doi:10.1038/nature07107
62. FenouilR, CauchyP, KochF, DescostesN, CabezaJZ, et al. (2012) CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Research 22: 2399–2408 doi:10.1101/gr.138776.112
63. The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487: 330–337 doi:10.1038/nature11252
64. The Cancer Genome Atlas Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499: 43–49 doi:10.1038/nature12222
65. The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490: 61–70 doi:10.1038/nature11412
66. SaundersCT, WongWSW, SwamyS, BecqJ, MurrayLJ, et al. (2012) Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28: 1811–1817 doi:10.1093/bioinformatics/bts271
67. DerrienT, EstelléJ, SolaSM, KnowlesDG, RaineriE, et al. (2012) Fast Computation and Applications of Genome Mappability. PLoS ONE 7: e30377 doi:10.1371/journal.pone.0030377
68. QuinlanAR, HallIM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842 doi:10.1093/bioinformatics/btq033
69. R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals
- Nipbl and Mediator Cooperatively Regulate Gene Expression to Control Limb Development
- Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel
- Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation