A Polyubiquitin Chain Reaction: Parkin Recruitment to Damaged Mitochondria
article has not abstract
Vyšlo v časopise:
A Polyubiquitin Chain Reaction: Parkin Recruitment to Damaged Mitochondria. PLoS Genet 11(1): e32767. doi:10.1371/journal.pgen.1004952
Kategorie:
Perspective
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004952
Souhrn
article has not abstract
Zdroje
1. Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4: a011338. doi: 10.1101/cshperspect.a011338 23125018
2. Winklhofer KF (2014) Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol 24: 332–341. doi: 10.1016/j.tcb.2014.01.001 24485851
3. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, et al. (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162–166. 24784582
4. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, et al. (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460: 127–139. doi: 10.1042/BJ20140334 24660806
5. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, et al. (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205: 143–153. doi: 10.1083/jcb.201402104 24751536
6. Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, et al. (2013) Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 288: 22019–22032. doi: 10.1074/jbc.M113.467530 23754282
7. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, et al. (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080. doi: 10.1098/rsob.120080 22724072
8. Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, et al. (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2: 1002. doi: 10.1038/srep01002 23256036
9. Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, et al. (2011) Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J 30: 2853–2867. doi: 10.1038/emboj.2011.204 21694720
10. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, et al. (2013) Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 4: 1982. doi: 10.1038/ncomms2982 23770887
11. Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, et al. (2013) A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat Commun 4: 1983. doi: 10.1038/ncomms2983 23770917
12. Spratt DE, Walden H, Shaw GS (2014) RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J 458: 421–437. doi: 10.1042/BJ20140006 24576094
13. Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, et al. (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340: 1451–1455. doi: 10.1126/science.1237908 23661642
14. Wauer T, Komander D (2013) Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 32: 2099–2112. doi: 10.1038/emboj.2013.125 23727886
15. Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, et al. (2014) Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering. PLoS Genet 10: e1004861. doi: 10.1371/journal.pgen.1004861 25474007
16. Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, et al. (2014) Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Mol Cell 56: 360–375. doi: 10.1016/j.molcel.2014.09.007 25284222
17. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, et al. (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510: 370–375. 24896179
18. Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, et al. (2014) The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 23: 5227–5242. doi: 10.1093/hmg/ddu244 24852371
19. Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA, et al. (2014) USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 33: 2473–2491. doi: 10.15252/embj.201489729 25216678
20. Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, et al. (2010) The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLoS Genet 6: e1001229. doi: 10.1371/journal.pgen.1001229 21151955
21. Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, et al. (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200: 163–172. doi: 10.1083/jcb.201210111 23319602
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Global Regulatory Architecture of Transcription during the Cell Cycle
- A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the Mutant
- Proteasomes, Sir2, and Hxk2 Form an Interconnected Aging Network That Impinges on the AMPK/Snf1-Regulated Transcriptional Repressor Mig1
- Regulating Maf1 Expression and Its Expanding Biological Functions