#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma


For the development of future cancer therapies it is imperative to understand the molecular processes underlying tumor initiation and expansion. Many key factors involved in these processes have been identified based on cell culture and transplantation experiments, but their relevance for tumor formation and disease progression in the living organism is often unclear. Therefore, genetically modified mice spontaneously developing tumors present indispensable models for cancer research. Here, we address this issue by studying the formation of melanoma, the most fatal skin tumor in industrialized countries. To this end, we use a transgenic mouse model to elucidate cellular and molecular mechanisms regulating congenital nevus and melanoma initiation. We show that a transcription factor called SOX10 promotes melanoma formation by repressing an anti-tumorigenic program involving the activity of a related factor, SOX9. When SOX10 is inactivated, SOX9 becomes upregulated and induces cell cycle arrest and death in melanoma cells. Furthermore, upon experimental elevation of SOX9 levels, SOX10 activity is suppressed, revealing an antagonistic relationship between SOX9 and SOX10 in melanoma initiation. Knowledge of how an anti-tumorigenic program can be stimulated by modulating the activities of these key factors might help to design novel therapeutic strategies.


Vyšlo v časopise: Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma. PLoS Genet 11(1): e32767. doi:10.1371/journal.pgen.1004877
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004877

Souhrn

For the development of future cancer therapies it is imperative to understand the molecular processes underlying tumor initiation and expansion. Many key factors involved in these processes have been identified based on cell culture and transplantation experiments, but their relevance for tumor formation and disease progression in the living organism is often unclear. Therefore, genetically modified mice spontaneously developing tumors present indispensable models for cancer research. Here, we address this issue by studying the formation of melanoma, the most fatal skin tumor in industrialized countries. To this end, we use a transgenic mouse model to elucidate cellular and molecular mechanisms regulating congenital nevus and melanoma initiation. We show that a transcription factor called SOX10 promotes melanoma formation by repressing an anti-tumorigenic program involving the activity of a related factor, SOX9. When SOX10 is inactivated, SOX9 becomes upregulated and induces cell cycle arrest and death in melanoma cells. Furthermore, upon experimental elevation of SOX9 levels, SOX10 activity is suppressed, revealing an antagonistic relationship between SOX9 and SOX10 in melanoma initiation. Knowledge of how an anti-tumorigenic program can be stimulated by modulating the activities of these key factors might help to design novel therapeutic strategies.


Zdroje

1. Wilson M., and Koopman P. (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12:441–6. 12100890

2. Wegner M. (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27:1409–20. 10037800

3. Sarkar A., and Hochedlinger K. (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30. 23290134

4. Girard M., and Goossens M. (2006) Sumoylation of the SOX10 transcription factor regulates its transcriptional activity. FEBS Lett 580:1635–41. 16494873

5. Uchikawa M., Kamachi Y., and Kondoh H. (1999) Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech Dev 84:103–20. 10473124

6. Lee P.C., Taylor-Jaffe K.M., Nordin K.M., Prasad M.S., Lander R.M., et al. (2012) SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest. J Cell Biol 198: 799–813. doi: 10.1083/jcb.201204161 22927467

7. Rudin C.M., Durinck S., Stawiski E.W., Poirier J.T., Modrusan Z., et al. (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–6. doi: 10.1038/ng.2405 22941189

8. Castillo S.D., Matheu A., Mariani N., Carretero J., Lopez-Rios F., et al. (2012) Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer. Cancer Res 72:176–86. doi: 10.1158/0008-5472.CAN-11-3506 22084397

9. Shakhova O., Zingg D., Schaefer S.M., Hari L., Civenni G., et al. (2012) Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol 14:882–90. doi: 10.1038/ncb2535 22772081

10. Vervoort S.J., van Boxtel R., and Coffer P.J. (2013) The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene 32:3397–409.

11. Cheung M., and Briscoe J. (2003) Neural crest development is regulated by the transcription factor Sox9. Development 130:5681–93. 14522876

12. O. Shakhova, and L. Sommer (2010) Neural crest-derived stem cells. Stem Book.

13. Britsch S., Goerich D.E., Riethmacher D., Peirano R.I., Rossner M., et al. (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78. 11156606

14. Paratore C., Eichenberger C., Suter U., and Sommer L. (2002) Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet 11:3075–85. 12417529

15. Kim J., Lo L., Dormand E., and Anderson D.J. (2003) SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38:17–31. 12691661

16. Mollaaghababa R., and Pavan W.J. (2003) The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22:3024–34. 12789277

17. Bondurand N., Dastot-Le Moal F., Stanchina L., Collot N., Baral V., et al. (2007) Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet 81:1169–85.

18. Kuhlbrodt K., Schmidt C., Sock E., Pingault V., Bondurand N., et al. (1998) Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients. J Biol Chem 273:23033–8. 9722528

19. Herbarth B., Pingault V., Bondurand N., Kuhlbrodt K., Hermans-Borgmeyer I., et al. (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A 95:5161–5. 9560246

20. Pingault V., Bondurand N., Kuhlbrodt K., Goerich D.E., Prehu M.O., et al. (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18:171–3. 9462749

21. Stolt C.C., Lommes P., Hillgartner S., and Wegner M. (2008) The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res 36:5427–40. doi: 10.1093/nar/gkn527 18703590

22. Potterf S.B., Mollaaghababa R., Hou L., Southard-Smith E.M., Hornyak T.J., et al. (2001) Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol 237: 245–57. 11543611

23. Harris M.L., Buac K., Shakhova O., Hakami R.M., Wegner M., et al. (2013) A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors. PLoS Genet 9:e1003644. doi: 10.1371/journal.pgen.1003644 23935512

24. Aoki Y., Saint-Germain N., Gyda M., Magner-Fink E., Lee Y.H., et al. (2003) Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev Biol 259:19–33. 12812785

25. Nonaka D., Chiriboga L., and Rubin B.P. (2008) Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol 32:1291–8. doi: 10.1097/PAS.0b013e3181658c14 18636017

26. Spokony R.F., Aoki Y., Saint-Germain N., Magner-Fink E., and Saint-Jeannet J.P. (2002) The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129:421–32. 11807034

27. Kist R., Schrewe H., Balling R., and Scherer G. (2002) Conditional inactivation of Sox9: a mouse model for campomelic dysplasia. Genesis 32:121–3. 11857796

28. Bell D.M., Leung K.K., Wheatley S.C., Ng L.J., Zhou S., et al. (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–8. 9171829

29. Kent J., Wheatley S.C., Andrews J.E., Sinclair A.H., and Koopman P. (1996) A male-specific role for SOX9 in vertebrate sex determination. Development 122:2813–22. 8787755

30. Morais da Silva S., Hacker A., Harley V., Goodfellow P., Swain A., et al. (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14:62–8. 8782821

31. Cronin J.C., Watkins-Chow D.E., Incao A.A., Hasskamp J.H., Schonewolf N., et al. (2013) SOX10 ablation arrests the cell cycle, induces senescence and suppresses melanomagenesis. Cancer Res 73: 5709–18. doi: 10.1158/0008-5472.CAN-12-4620 23913827

32. Cook A.L., Smith A.G., Smit D.J., Leonard J.H., and Sturm R.A. (2005) Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp Cell Res 308:222–35. 15896776

33. Krahl D., and Sellheyer K. (2010) Sox9, more than a marker of the outer root sheath: spatiotemporal expression pattern during human cutaneous embryogenesis. J Cutan Pathol 37:350–6. doi: 10.1111/j.1600-0560.2009.01369.x 19614725

34. Flammiger A., Besch R., Cook A.L., Maier T., Sturm R.A., et al. (2009) SOX9 and SOX10 but not BRN2 are required for nestin expression in human melanoma cells. J Invest Dermatol 129:945–53. 18923447

35. Passeron T., Valencia J.C., Namiki T., Vieira W.D., Passeron H., et al. (2009) Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest 119:954–63. doi: 10.1172/JCI34015 19273910

36. Bakos R.M., Maier T., Besch R., Mestel D.S., Ruzicka T., et al. (2009) Nestin and SOX9 and SOX10 transcription factors are coexpressed in melanoma. Exp Dermatol 19:e89–94. doi: 10.1111/j.1600-0625.2009.00991.x 19845757

37. Nowak J.A., Polak L., Pasolli H.A., and Fuchs E. (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3:33–43. doi: 10.1016/j.stem.2008.05.009 18593557

38. Vidal V.P., Chaboissier M.C., Lutzkendorf S., Cotsarelis G., Mill P., et al. (2005) Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol 15:1340–51. 16085486

39. Goding C.R. (2000) Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev 14:1712–28. 10898786

40. Vidal V.P., Ortonne N., and Schedl A. (2008) SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. J Cutan Pathol 35:373–9. doi: 10.1111/j.1600-0560.2007.00815.x 18333897

41. Zaidi M.R., Davis S., Noonan F.P., Graff-Cherry C., Hawley T.S., et al. (2011) Interferon-gamma links ultraviolet radiation to melanomagenesis in mice. Nature 469:548–53. doi: 10.1038/nature09666 21248750

42. Nishimura E.K., Jordan S.A., Oshima H., Yoshida H., Osawa M., et al. (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–60. 11976685

43. Nishimura E.K., Granter S.R., and Fisher D.E. (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307:720–4. 15618488

44. Mackenzie M.A., Jordan S.A., Budd P.S., and Jackson I.J. (1997) Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev Biol 192:99–107. 9405100

45. Fantauzzo K.A., Kurban M., Levy B., and Christiano A.M. (2012) Trps1 and its target gene Sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis. PLoS Genet 8: e1003002. doi: 10.1371/journal.pgen.1003002 23133399

46. Bosenberg M., Muthusamy V., Curley D.P., Wang Z., Hobbs C., et al. (2006) Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44:262–7. 16676322

47. Finzsch M., Schreiner S., Kichko T., Reeh P., Tamm E.R., et al. (2010) Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J Cell Biol 189:701–12. doi: 10.1083/jcb.200912142 20457761

48. Ackermann J., Frutschi M., Kaloulis K., McKee T., Trumpp A., et al. (2005) Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 65:4005–11. 15899789

49. Hoek K.S., Eichhoff O.M., Schlegel N.C., Dobbeling U., Kobert N., et al. (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68:650–6. doi: 10.1158/0008-5472.CAN-07-2491 18245463

50. Stolt C.C., and Wegner M. (2010) SoxE function in vertebrate nervous system development. Int J Biochem Cell Biol 42:437–40. 19647093

51. Passeron T., Valencia J.C., Bertolotto C., Hoashi T., Le Pape E., et al. (2007) SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc Natl Acad Sci U S A 104:13984–9. 17702866

52. Stolt C.C., Schmitt S., Lommes P., Sock E., and Wegner M. (2005) Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Dev Biol 281:309–17. 15893981

53. Finzsch M., Stolt C.C., Lommes P., and Wegner M. (2008) Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 135:637–46. doi: 10.1242/dev.010454 18184726

54. Cheung M., Chaboissier M.C., Mynett A., Hirst E., Schedl A., et al. (2005) The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8:179–92. 15691760

55. Honore S.M., Aybar M.J., and Mayor R. (2003) Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 260:79–96.

56. John N., Cinelli P., Wegner M., and Sommer L. (2011) Transforming growth factor beta-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells 29: 689–99. doi: 10.1002/stem.607 21308864

57. Paratore C., Goerich D.E., Suter U., Wegner M., and Sommer L. (2001) Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128:3949–61. 11641219

58. Reiprich S., Stolt C.C., Schreiner S., Parlato R., and Wegner M. (2008) SoxE proteins are differentially required in mouse adrenal gland development. Mol Biol Cell 19:1575–86. doi: 10.1091/mbc.E07-08-0782 18272785

59. Mansour S., Hall C.M., Pembrey M.E., and Young I.D. (1995) A clinical and genetic study of campomelic dysplasia. J Med Genet 32:415–20. 7666392

60. Lefebvre V., Dumitriu B., Penzo-Mendez A., Han Y., and Pallavi B. (2007) Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 39:2195–214. 17625949

61. Mihic-Probst D., Kuster A., Kilgus S., Bode-Lesniewska B., Ingold-Heppner B., et al. (2007) Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int J Cancer 121:1764–70. 17597110

62. Santoro R. (2014) Analysis of chromatin composition of repetitive sequences: the ChIP-Chop assay. Methods Mol Biol 1094:319–28. doi: 10.1007/978-1-62703-706-8_25 24162999

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#