#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress


Transposable elements are mobile DNA elements that are a prevalent component of many eukaryotic genomes. While transposable elements can often have deleterious effects through insertions into protein-coding genes they may also contribute to regulatory variation of gene expression. There are a handful of examples in which specific transposon insertions contribute to regulatory variation of nearby genes, particularly in response to environmental stress. We sought to understand the genome-wide influence of transposable elements on gene expression responses to abiotic stress in maize, a plant with many families of transposable elements located in between genes. Our analysis suggests that a small number of maize transposable element families may contribute to the response of nearby genes to abiotic stress by providing stress-responsive enhancer-like functions. The specific insertions of transposable elements are often polymorphic within a species. Our data demonstrate that allelic variation for insertions of the transposable elements associated with stress-responsive expression can contribute to variation in the regulation of nearby genes. Thus novel insertions of transposable elements provide a potential mechanism for genes to acquire cis-regulatory influences that could contribute to heritable variation for stress response.


Vyšlo v časopise: Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress. PLoS Genet 11(1): e32767. doi:10.1371/journal.pgen.1004915
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004915

Souhrn

Transposable elements are mobile DNA elements that are a prevalent component of many eukaryotic genomes. While transposable elements can often have deleterious effects through insertions into protein-coding genes they may also contribute to regulatory variation of gene expression. There are a handful of examples in which specific transposon insertions contribute to regulatory variation of nearby genes, particularly in response to environmental stress. We sought to understand the genome-wide influence of transposable elements on gene expression responses to abiotic stress in maize, a plant with many families of transposable elements located in between genes. Our analysis suggests that a small number of maize transposable element families may contribute to the response of nearby genes to abiotic stress by providing stress-responsive enhancer-like functions. The specific insertions of transposable elements are often polymorphic within a species. Our data demonstrate that allelic variation for insertions of the transposable elements associated with stress-responsive expression can contribute to variation in the regulation of nearby genes. Thus novel insertions of transposable elements provide a potential mechanism for genes to acquire cis-regulatory influences that could contribute to heritable variation for stress response.


Zdroje

1. McClintockB (1956) Controlling Elements and the Gene. Cold Spring Harbor Symposia on Quantitative Biology 21: 197–216.

2. BiémontC (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186: 1085–1093.

3. WickerT, SabotF, Hua-VanA, BennetzenJL, CapyP, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8: 973–982.

4. FeschotteC, JiangN, WesslerS (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3: 329–341.

5. McClintockB (1984) The significance of responses of the genome to challenge. Science 226: 792–801.

6. McClintockB (1963) Further Studies of Gene-Control Systems in Maize. Carnegie Institution of Washington Yearbook 62: 486–493.

7. de SouzaFS, FranchiniLF, RubinsteinM (2013) Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol 30: 1239–1251.

8. FeschotteC (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9: 397–405.

9. CowleyM, OakeyRJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9: e1003234.

10. LischD (2013) How important are transposons for plant evolution? Nat Rev Genet 14: 49–61.

11. SlotkinRK, MartienssenR (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285.

12. MartienssenR, BarkanA, TaylorWC, FreelingM (1990) Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev 4: 331–343.

13. BarkanA, MartienssenR (1991) Inactivation of Maize Transposon Mu Suppresses a Mutant Phenotype by Activating an Outward-Reading Promoter Near the End of Mu1. PNAS 88: 3502–3506.

14. GirardL, FreelingM (2000) Mutator-suppressible alleles of rough sheath1 and liguleless3 in maize reveal multiple mechanisms for suppression. Genetics 154: 437–446.

15. MorganHD, SutherlandHG, MartinDI, WhitelawE (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23: 314–318.

16. ItoH, GaubertH, BucherE, MirouzeM, VaillantI, et al. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472: 115–119.

17. HollisterJD, GautBS (2009) Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19: 1419–1428.

18. LischD (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60: 43–66.

19. EichtenSR, EllisNA, MakarevitchI, YehCT, GentJI (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8: e1003127.

20. WesslerSR (1996) Turned on by stress. Plant retrotransposons. Curr Biol 6: 959–961.

21. CapyP, GasperiG, BiémontC, BazinC (2001) Stress and transposable elements: co-evolution or useful parasites? Heredity (Edinb) 85: 101–106.

22. GrandbastienMA, AudeonC, BonnivardE, CasacubertaJM, ChalhoubB (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110: 229–241.

23. BeguiristainT, Grandbastien, MA, PuigdomènechP, Casacuberta, JM (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 127: 212–221.

24. BucherE, ReindersJ, MirouzeM (2012) Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol 15: 503–510.

25. ItoH, YoshidaT, TsukaharaS, KawabeA (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518: 256–261.

26. NaitoK, ZhangF, TsukiyamaT, SaitoH, HancockCN, et al. (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461: 1130–1134.

27. YasudaK, ItoM, SugitaT, TsukiyamaT, SaitoH, et al. (2013) Utilization of transposable element as a novel genetic tool for modification of the stress response in rice. Mol Breed 32: 505–516.

28. PecinkaA, DinhHQ, BaubecT, RosaM, LettnerN, et al. (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22: 3118–3129.

29. CavrakVV, LettnerN, JamgeS, KosarewiczA, BayerLM, et al. (2014) How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genet 10: e1004115.

30. HirochikaH (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35: 231–240.

31. KaepplerSM, KaepplerHF, RheeY (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43: 179–188.

32. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

33. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436: 793–800.

34. BaucomRS, EstillJC, ChaparroC, UpshawN, JogiA, et al. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5: e1000732.

35. SchnablePS, WareD, FultonRS, SteinJC, WeiF, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.

36. AnanievEV, PhillipsRL, RinesHW (1998) Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics 149: 2025–2037.

37. SanMiguelP, GautBS, TikhonovA, NakajimaY, BennetzenJL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20: 43–45.

38. SwigonovaZ, BennetzenJL, MessingJ (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169: 891–906.

39. FuH, DoonerHK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99: 9573–9578.

40. WangQ, DoonerHK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 103: 17644–17649.

41. BrunnerS, FenglerK, MorganteM, TingeyS, RafalskiA (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17: 343–360.

42. StuderA, ZhaoQ, Ross-IbarraJ, DoebleyJ (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43: 1160–1163.

43. CastellettiS, TuberosaR, PindoM, SalviS (2014) A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3: g3.114.010686v1.

44. YangQ, LiZ, LiW, KuL, WangC, et al. (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci U S A. 110: 16969–16974.

45. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol. 11: R106.

46. AgarwalPK, AgarwalP, ReddyMK, SoporySK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263–1274.

47. MaruyamaK, SakumaY, KasugaM, Ito, SekiM, et al. (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38: 982–993.

48. SekhonRS, LinH, ChildsKL, HanseyCN, BuellCR, et al. (2011) Genome-wide atlas of transcription during maize development. Plant J 66: 553–563.

49. ChiaJM, SongC, BradburyPJ, CostichD, de LeonN, et al. (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44: 803–807.

50. ButelliE, LicciardelloC, ZhangY, LiuJ, MackayS, et al. (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24: 1242–1255.

51. MartinA, TroadecC, BoualemA, RajabM, FernandezR, et al. (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461: 1135–1138.

52. XiaoH, JiangN, SchaffnerE, StockingerEJ, van der KnaapE (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319: 1527–1530.

53. TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111.

54. QuinlanAR, HallIM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842.

55. SchnableJC, FreelingM, LyonsE (2012) Genome-wide analysis of syntenic gene deletion in the grasses. Genome Biol Evol 4: 265–277.

56. MartinM (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17: 10–12.

57. GrabherrMG, HaasBJ, YassourM, LevinJZ, ThompsonDA, et al. (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29: 644–52.

58. WuTD, WatanabeCK (2005) GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859–1875.

59. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.

60. RobbS, LuL, ValenciaE, BurnetteJM3rd, OkumotoY, et al. (2013) The use of relocaTE and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice. G3. 3: 949–957.

61. RozenS, SkaletskyHR (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132: 365–386.

62. MakarevitchI, HarrisC (2010) Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize. Plant Physiol 152: 927–938.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#