Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids
As populations evolve into new species they acquire mutations that are compatible with their own genetic background, but often lead to defects when crossed to others. Here, we show that naturally evolved differences in the centromere-specific histone H3 (CENH3) can contribute to this process. Unlike canonical histones, CENH3 differentiates rapidly even between closely related species. To better understand the functional role of natural CENH3 variation, we complemented a null allele of Arabidopsis with progressively more distant orthologs. Contrary to previous findings, we discovered that all tested variants, even the highly diverged maize CENH3, could restore normal growth and reproduction in selfing individuals. However, when crossed to the wild type, hybrid progeny suffered from extensive mis-segregation. Genotypes include simple aneuploids, novel genetic rearrangements, and in extreme cases haploids where all the chromosomes from one parent are lost. This indicates that while wide variation in CENH3 is compatible with its essential function, epigenetically different centromeres do not function well when brought together in a hybrid embryo. A better understanding of haploid generation would have profound effects on plant breeding and our results suggest that the natural variation of CENH3 could offer a cache of testable variation.
Vyšlo v časopise:
Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids. PLoS Genet 11(1): e32767. doi:10.1371/journal.pgen.1004970
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004970
Souhrn
As populations evolve into new species they acquire mutations that are compatible with their own genetic background, but often lead to defects when crossed to others. Here, we show that naturally evolved differences in the centromere-specific histone H3 (CENH3) can contribute to this process. Unlike canonical histones, CENH3 differentiates rapidly even between closely related species. To better understand the functional role of natural CENH3 variation, we complemented a null allele of Arabidopsis with progressively more distant orthologs. Contrary to previous findings, we discovered that all tested variants, even the highly diverged maize CENH3, could restore normal growth and reproduction in selfing individuals. However, when crossed to the wild type, hybrid progeny suffered from extensive mis-segregation. Genotypes include simple aneuploids, novel genetic rearrangements, and in extreme cases haploids where all the chromosomes from one parent are lost. This indicates that while wide variation in CENH3 is compatible with its essential function, epigenetically different centromeres do not function well when brought together in a hybrid embryo. A better understanding of haploid generation would have profound effects on plant breeding and our results suggest that the natural variation of CENH3 could offer a cache of testable variation.
Zdroje
1. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9: 923–937. doi: 10.1038/nrg2466 19002142
2. Birchler JA, Gao Z, Sharma A, Presting GG, Han F (2011) Epigenetic aspects of centromere function in plants. Curr Opin Plant Biol 14: 217–222. doi: 10.1016/j.pbi.2011.02.004 21411364
3. Melters DP, Bradnam KR, Young HA, Telis N, May MR, et al. (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14: R10. doi: 10.1186/gb-2013-14-1-r10 23363705
4. Fu S, Lv Z, Gao Z, Wu H, Pang J, et al. (2013) De novo centromere formation on a chromosome fragment in maize. Proceedings of the National Academy of Sciences of the United States of America 110: 6033–6036. doi: 10.1073/pnas.1303944110 23530217
5. du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, et al. (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16: 144–153. 9171825
6. Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18: 30–37. 9425896
7. Black BE, Cleveland DW (2011) Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144: 471–479. doi: 10.1016/j.cell.2011.02.002 21335232
8. Gong Z, Wu Y, Koblizkova A, Torres GA, Wang K, et al. (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24: 3559–3574. doi: 10.1105/tpc.112.100511 22968715
9. Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A 103: 3238–3243. 16492777
10. Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334: 686–690. doi: 10.1126/science.1206880 22053052
11. Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Molecular biology and evolution 21: 1712–1718. 15175412
12. Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157: 1293–1298. 11238413
13. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science (New York, NY) 293: 1098–1102. 11498581
14. Zwick ME, Salstrom JL, Langley CH (1999) Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics 152: 1605–1614. 10430586
15. Dawe RK, Hiatt EN (2004) Plant neocentromeres: fast, focused, and driven. Chromosome Res 12: 655–669. 15289670
16. Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science (New York, NY) 322: 1559–1562. doi: 10.1126/science.1161406 19056989
17. Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3: 730–739. 11483958
18. Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional Complementation of Human Centromere Protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Molecular and cellular Biology 24: 6620–6630. 15254229
19. Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 7: 1045–1053. 9371740
20. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464: 615–618. doi: 10.1038/nature08842 20336146
21. Ravi M, Kwong PN, Menorca RM, Valencia JT, Ramahi JS, et al. (2010) The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186: 461–471. doi: 10.1534/genetics.110.120337 20628040
22. Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16: 108–116. doi: 10.1016/j.tplants.2010.11.005 21177137
23. Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186: 1231–1245. doi: 10.1534/genetics.110.121079 20876566
24. Chen G, Rubinstein B, Li R (2012) Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap. BioEssays: news and reviews in molecular, cellular and developmental biology 34: 893–900. doi: 10.1002/bies.201200069 22926916
25. Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, et al. (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences of the United States of America 106: 3853–3858. doi: 10.1073/pnas.0813376106 19223592
26. Malik HS, Vermaak D, Henikoff S (2002) Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci U S A 99: 1449–1454. 11805302
27. Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, et al. (2014) Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. eLife 3: e02203. doi: 10.7554/eLife.02203 24844245
28. Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138: 1067–1082. doi: 10.1016/j.cell.2009.08.036 19766562
29. Westermann S, Schleiffer A (2013) Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol 23: 260–269. doi: 10.1016/j.tcb.2013.01.010 23481674
30. Dubin M, Fuchs J, Graf R, Schubert I, Nellen W (2010) Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis. Nucleic Acids Res 38: 7526–7537. doi: 10.1093/nar/gkq664 20675719
31. Vermaak D, Hayden HS, Henikoff S (2002) Centromere Targeting Element within the Histone Fold Domain of Cid. 22: 7553–7561. 12370302
32. Moraes IC, Lermontova I, Schubert I (2011) Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Mol Biol 75: 253–261. doi: 10.1007/s11103-010-9723-3 21190064
33. Baker RE, Rogers K (2006) Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174: 1481–1492. 17028330
34. Meraldi P, McAinsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7: R23. 16563186
35. Henry IM, Dilkes BP, Tyagi AP, Lin HY, Comai L (2009) Dosage and parent-of-origin effects shaping aneuploid swarms in A. thaliana. Heredity (Edinb) 103: 458–468. doi: 10.1038/hdy.2009.81 19603060
36. Meyers LA, Levin DA (2006) ON THE ABUNDANCE OF POLYPLOIDS IN FLOWERING PLANTS. Evolution 60: 1198–1206. 16892970
37. Ramsey J, Schemske DW (2002) NEOPOLYPLOIDY IN FLOWERING PLANTS. Annual Review of Ecology and Systematics 33: 589–639.
38. Houben A, Sanei M, Pickering R (2011) Barley doubled-haploid production by uniparental chromosome elimination. Plant Cell, Tissue and Organ Culture (PCTOC) 104: 321–327.
39. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, et al. (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17: 2431–2438. 16055632
40. Ishii T, Ueda T, Tanaka H, Tsujimoto H (2010) Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res 18: 821–831. doi: 10.1007/s10577-010-9158-3 20953694
41. Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A 108: E498–505. doi: 10.1073/pnas.1103190108 21746892
42. Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A, et al. (2012) Chromosomal duplication is a transient evolutionary solution to stress. Proceedings of the National Academy of Sciences 109: 21010–21015. doi: 10.1073/pnas.1211150109 23197825
43. Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482: 246–250. doi: 10.1038/nature10795 22286062
44. Black BE, Jansen LET, Maddox PS, Foltz DR, Desai AB, et al. (2007) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Molecular cell 25: 309–322. 17244537
45. Ross BD, Rosin L, Thomae AW, Hiatt MA, Vermaak D, et al. (2013) Stepwise evolution of essential centromere function in a Drosophila neogene. Science (New York, NY) 340: 1211–1214. doi: 10.1126/science.1234393 23744945
46. Peterson R, Slovin JP, Chen C (2010) A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology 1.
47. Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4: 507–516. 8939362
48. Henry IM, Dilkes BP, Young K, Watson B, Wu H, et al. (2005) Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170: 1979–1988. 15944363
49. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. 15034147
50. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. doi: 10.1093/molbev/mst197 24132122
51. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36. 7584402
52. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: 275–282. 1633570
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Global Regulatory Architecture of Transcription during the Cell Cycle
- A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the Mutant
- Proteasomes, Sir2, and Hxk2 Form an Interconnected Aging Network That Impinges on the AMPK/Snf1-Regulated Transcriptional Repressor Mig1
- Regulating Maf1 Expression and Its Expanding Biological Functions