#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Insight in Genome-Wide Association of Metabolite Quantitative Traits by Exome Sequence Analyses


Human metabolic individuality is under strict control of genetic and environmental factors. In our study, we aimed to find the genetic determinants of circulating molecules in sera of large set of individuals representing the general population. First, we performed a hypothesis-free genome wide screen in this population to identify genetic regions of interest. Our study confirmed four known gene metabolite connections, but also pointed to four novel ones. Genome-wide screens enriched for common intergenic variants may miss causal genetic variations directly changing the protein sequence. To investigate this further, we zoomed into regions of interest and tested whether the association signals obtained in the first stage were direct, or whether they represent causal variations, which were not captured in the initial panel. These subsequent tests showed that protein coding and regulatory variations are involved in metabolite levels. For two genomic regions we also found that genes harbour more than one causal variant influencing metabolite levels independent of each other. We also observed strong connection between markers of cardio-metabolic health and metabolites. Taken together, our novel loci are of interest for further research to investigate the causal relation to for instance type 2 diabetes and cardiovascular disease.


Vyšlo v časopise: Insight in Genome-Wide Association of Metabolite Quantitative Traits by Exome Sequence Analyses. PLoS Genet 11(1): e32767. doi:10.1371/journal.pgen.1004835
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004835

Souhrn

Human metabolic individuality is under strict control of genetic and environmental factors. In our study, we aimed to find the genetic determinants of circulating molecules in sera of large set of individuals representing the general population. First, we performed a hypothesis-free genome wide screen in this population to identify genetic regions of interest. Our study confirmed four known gene metabolite connections, but also pointed to four novel ones. Genome-wide screens enriched for common intergenic variants may miss causal genetic variations directly changing the protein sequence. To investigate this further, we zoomed into regions of interest and tested whether the association signals obtained in the first stage were direct, or whether they represent causal variations, which were not captured in the initial panel. These subsequent tests showed that protein coding and regulatory variations are involved in metabolite levels. For two genomic regions we also found that genes harbour more than one causal variant influencing metabolite levels independent of each other. We also observed strong connection between markers of cardio-metabolic health and metabolites. Taken together, our novel loci are of interest for further research to investigate the causal relation to for instance type 2 diabetes and cardiovascular disease.


Zdroje

1. ChenG, RamosE, AdeyemoA, ShrinerD, ZhouJ, et al. (2012) UGT1A1 is a major locus influencing bilirubin levels in African Americans. Eur J Hum Genet 20: 463–468.

2. McCarthyMI, AbecasisGR, CardonLR, GoldsteinDB, LittleJ, et al. (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9: 356–369.

3. DanikJS, PareG, ChasmanDI, ZeeRY, KwiatkowskiDJ, et al. (2009) Novel loci, including those related to Crohn disease, psoriasis, and inflammation, identified in a genome-wide association study of fibrinogen in 17 686 women: the Women's Genome Health Study. Circ Cardiovasc Genet 2: 134–141.

4. ChasmanDI, PareG, MoraS, HopewellJC, PelosoG, et al. (2009) Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet 5: e1000730.

5. SuhreK, WallaschofskiH, RafflerJ, FriedrichN, HaringR, et al. (2011) A genome-wide association study of metabolic traits in human urine. Nat Genet 43: 565–569.

6. NicholsonG, RantalainenM, LiJV, MaherAD, MalmodinD, et al. (2011) A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genet 7: e1002270.

7. KettunenJ, TukiainenT, SarinAP, Ortega-AlonsoA, TikkanenE, et al. (2012) Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet 44: 269–276.

8. Xie W, Wood AR, Lyssenko V, Weedon MN, Knowles JW, et al. (2013) Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes.

9. SuhreK, ShinSY, PetersenAK, MohneyRP, MeredithD, et al. (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477: 54–60.

10. KottgenA, AlbrechtE, TeumerA, VitartV, KrumsiekJ, et al. (2013) Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 45: 145–154.

11. KolzM, JohnsonT, SannaS, TeumerA, VitartV, et al. (2009) Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5: e1000504.

12. Rueedi R LM, Nicholls AW., Reza M Salek, Pedro Marques-Vidal, Edgard Morya, Koichi Sameshima, Ivan Montoliu, Laeticia Da Silva, Sebastiano Collino, François-Pierre Martin, Serge Rezzi, Christoph Steinbeck, Dawn M Waterworth, Gérard Waeber, Peter Vollenweider, Jacques S Beckmann, Johannes Le Coutre, Vincent Mooser, Sven Bergmann, Ulrich K Genick, Zoltán Kutalik (2014) Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links PLoS Genet.

13. LappalainenT, SammethM, FriedlanderMR, t HoenPA, MonlongJ, et al. (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501: 506–511.

14. MailmanMD, FeoloM, JinY, KimuraM, TrykaK, et al. (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39: 1181–1186.

15. OtaVK, BelluccoFT, GadelhaA, SantoroML, NotoC, et al. (2014) PRODH Polymorphisms, Cortical Volumes and Thickness in Schizophrenia. PLoS One 9: e87686.

16. VorstmanJA, MorcusME, DuijffSN, KlaassenPW, Heineman-de BoerJA, et al. (2006) The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry 45: 1104–1113.

17. FoxCS, LiuY, WhiteCC, FeitosaM, SmithAV, et al. (2012) Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 8: e1002695.

18. HennemanP, AulchenkoYS, FrantsRR, van DijkKW, OostraBA, et al. (2008) Prevalence and heritability of the metabolic syndrome and its individual components in a Dutch isolate: the Erasmus Rucphen Family study. J Med Genet 45: 572–577.

19. AulchenkoYS, RipkeS, IsaacsA, van DuijnCM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23: 1294–1296.

20. AbecasisGR, ChernySS, CooksonWO, CardonLR (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30: 97–101.

21. AminN, van DuijnCM, AulchenkoYS (2007) A genomic background based method for association analysis in related individuals. PLoS One 2: e1274.

22. HindorffLA, SethupathyP, JunkinsHA, RamosEM, MehtaJP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106: 9362–9367.

23. SherryST, WardMH, KholodovM, BakerJ, PhanL, et al. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29: 308–311.

24. KamburovA, PentchevK, GalickaH, WierlingC, LehrachH, et al. (2011) ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 39: D712–D717.

25. Magrane M, UniProt Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011.

26. McKusick VA (1998) Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders. Baltimore: Johns Hopkins University Press.

27. SaierJ, M.H., TranCV, BaraboteRD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34: D181–D186.

28. GasteigerE, GattikerA, HooglandC, IvanyiI, AppelRD, et al. (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31: 3784–3788.

29. KanehisaM, GotoS (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28: 27–30.

30. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

31. Brouwer RW, van den Hout MC, Grosveld FG, van Ijcken WF NARWHAL, a primary analysis pipeline for NGS data. Bioinformatics 28: 284–285.

32. KottgenA, PattaroC, BogerCA, FuchsbergerC, OldenM, et al. (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42: 376–384.

33. LangeLA, Croteau-ChonkaDC, MarvelleAF, QinL, GaultonKJ, et al. (2010) Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect in young adults. Hum Mol Genet 19: 2050–2058.

34. XieW, WoodAR, LyssenkoV, WeedonMN, KnowlesJW, et al. (2013) Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes 62: 2141–2150.

35. HongMG, KarlssonR, MagnussonPK, LewisMR, IsaacsW, et al. (2013) A genome-wide assessment of variability in human serum metabolism. Hum Mutat 34: 515–524.

36. IlligT, GiegerC, ZhaiG, Romisch-MarglW, Wang-SattlerR, et al. (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42: 137–141.

37. LeeY, YoonKA, JooJ, LeeD, BaeK, et al. (2013) Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide association study. Carcinogenesis 34: 307–313.

38. InouyeM, RipattiS, KettunenJ, LyytikainenLP, OksalaN, et al. (2012) Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet 8: e1002907.

39. SannaS, JacksonAU, NagarajaR, WillerCJ, ChenWM, et al. (2008) Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 40: 198–203.

40. RietschelM, MattheisenM, FrankJ, TreutleinJ, DegenhardtF, et al. (2010) Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression. Biol Psychiatry 68: 578–585.

41. BenyaminB, McRaeAF, ZhuG, GordonS, HendersAK, et al. (2009) Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. Am J Hum Genet 84: 60–65.

42. PotkinSG, GuffantiG, LakatosA, TurnerJA, KruggelF, et al. (2009) Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease. PLoS One 4: e6501.

43. BenjaminDJ, CesariniD, van der LoosMJ, DawesCT, KoellingerPD, et al. (2012) The genetic architecture of economic and political preferences. Proc Natl Acad Sci U S A 109: 8026–8031.

44. WuJH, LemaitreRN, ManichaikulA, GuanW, TanakaT, et al. (2013) Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 6: 171–183.

45. PorcuE, MediciM, PistisG, VolpatoCB, WilsonSG, et al. (2013) A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet 9: e1003266.

46. GellerF, FeenstraB, ZhangH, ShafferJR, HansenT, et al. (2011) Genome-wide association study identifies four loci associated with eruption of permanent teeth. PLoS Genet 7: e1002275.

47. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, et al. (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45: 353-361, 361e351–352.

48. FletcherO, JohnsonN, OrrN, HoskingFJ, GibsonLJ, et al. (2011) Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J Natl Cancer Inst 103: 425–435.

49. LiJ, HumphreysK, HeikkinenT, AittomakiK, BlomqvistC, et al. (2011) A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res Treat 126: 717–727.

50. ThomasG, JacobsKB, KraftP, YeagerM, WacholderS, et al. (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41: 579–584.

51. StaceySN, ManolescuA, SulemP, RafnarT, GudmundssonJ, et al. (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39: 865–869.

52. N'DiayeA, ChenGK, PalmerCD, GeB, TayoB, et al. (2011) Identification, replication, and fine-mapping of Loci associated with adult height in individuals of african ancestry. PLoS Genet 7: e1002298.

53. Lango AllenH, EstradaK, LettreG, BerndtSI, WeedonMN, et al. (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467: 832–838.

54. PillasD, HoggartCJ, EvansDM, O'ReillyPF, SipilaK, et al. (2010) Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS Genet 6: e1000856.

55. JongjaroenprasertW, PhusantisampanT, MahasirimongkolS, MushirodaT, HirankarnN, et al. (2012) A genome-wide association study identifies novel susceptibility genetic variation for thyrotoxic hypokalemic periodic paralysis. J Hum Genet 57: 301–304.

56. CheungCL, LauKS, HoAY, LeeKK, TiuSC, et al. (2012) Genome-wide association study identifies a susceptibility locus for thyrotoxic periodic paralysis at 17q24.3. Nat Genet 44: 1026–1029.

57. RothenbergME, SpergelJM, SherrillJD, AnnaiahK, MartinLJ, et al. (2010) Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet 42: 289–291.

58. KrintelSB, PalermoG, JohansenJS, GermerS, EssiouxL, et al. (2012) Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFalpha inhibitors in patients with rheumatoid arthritis. Pharmacogenet Genomics 22: 577–589.

59. PfeuferA, SannaS, ArkingDE, MullerM, GatevaV, et al. (2009) Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet 41: 407–414.

60. MarjamaaA, OikarinenL, PorthanK, RipattiS, PelosoG, et al. (2012) A common variant near the KCNJ2 gene is associated with T-peak to T-end interval. Heart Rhythm 9: 1099–1103.

61. ComuzzieAG, ColeSA, LastonSL, VorugantiVS, HaackK, et al. (2012) Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One 7: e51954.

62. Meyer TE, Verwoert GC, Hwang SJ, Glazer NL, Smith AV, et al. (2010) Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet 6.

63. SabattiC (2009) Service SK, Hartikainen AL, Pouta A, Ripatti S, et al (2009) Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41: 35–46.

64. TeslovichTM, MusunuruK, SmithAV, EdmondsonAC, StylianouIM, et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466: 707–713.

65. WillerCJ, SannaS, JacksonAU, ScuteriA, BonnycastleLL, et al. (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40: 161–169.

66. AulchenkoYS, RipattiS, LindqvistI, BoomsmaD, HeidIM, et al. (2009) Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 41: 47–55.

67. KathiresanS, WillerCJ, PelosoGM, DemissieS, MusunuruK, et al. (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41: 56–65.

68. ConsortiumUIG, BarrettJC, LeeJC, LeesCW, PrescottNJ, et al. (2009) Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 41: 1330–1334.

69. AndersonCA, BoucherG, LeesCW, FrankeA, D'AmatoM, et al. (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43: 246–252.

70. LingappaJR, PetrovskiS, KahleE, FellayJ, ShiannaK, et al. (2011) Genomewide association study for determinants of HIV-1 acquisition and viral set point in HIV-1 serodiscordant couples with quantified virus exposure. PLoS One 6: e28632.

71. McClayJL, AdkinsDE, AbergK, BukszarJ, KhachaneAN, et al. (2011) Genome-wide pharmacogenomic study of neurocognition as an indicator of antipsychotic treatment response in schizophrenia. Neuropsychopharmacology 36: 616–626.

72. JostinsL, RipkeS, WeersmaRK, DuerrRH, McGovernDP, et al. (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491: 119–124.

73. KennyEE, Pe'erI, KarbanA, OzeliusL, MitchellAA, et al. (2012) A genome-wide scan of Ashkenazi Jewish Crohn's disease suggests novel susceptibility loci. PLoS Genet 8: e1002559.

74. KristianssonK, PerolaM, TikkanenE, KettunenJ, SurakkaI, et al. (2012) Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 5: 242–249.

75. LettreG, PalmerCD, YoungT, EjebeKG, AllayeeH, et al. (2011) Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet 7: e1001300.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#