#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia,


Unlike mammals, the identity of the master sex-determining gene varies among fish species, and it is not yet clear if there is a common molecular pathway regulating gonadal sex determination across teleosts. Here we show that a Y-linked duplicate of the anti-Mullerian hormone (amhy) is essential for male sex determination in tilapia. Mutation of amhy resulted in male to female sex reversal, while overexpression of it resulted in female to male sex reversal. A missense single nucleotide polymorphisms (SNP) (C/T) in the open reading frame (ORF) of amhy might contribute to male sex determination in tilapia. Knockout of the anti-Müllerian hormone receptor type II (amhrII) also resulted in male to female sex reversal. Taken the amhy in Patagonian pejerrey, amhrII in Takifugu rubripes, gsdfY in Oryzias luzonensis into consideration, these data highlight an important role for TGF-β signaling in teleost sex determination.


Vyšlo v časopise: A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia,. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005678
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005678

Souhrn

Unlike mammals, the identity of the master sex-determining gene varies among fish species, and it is not yet clear if there is a common molecular pathway regulating gonadal sex determination across teleosts. Here we show that a Y-linked duplicate of the anti-Mullerian hormone (amhy) is essential for male sex determination in tilapia. Mutation of amhy resulted in male to female sex reversal, while overexpression of it resulted in female to male sex reversal. A missense single nucleotide polymorphisms (SNP) (C/T) in the open reading frame (ORF) of amhy might contribute to male sex determination in tilapia. Knockout of the anti-Müllerian hormone receptor type II (amhrII) also resulted in male to female sex reversal. Taken the amhy in Patagonian pejerrey, amhrII in Takifugu rubripes, gsdfY in Oryzias luzonensis into consideration, these data highlight an important role for TGF-β signaling in teleost sex determination.


Zdroje

1. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, et al. (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240–244. 1695712

2. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351: 117–21. 2030730

3. Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, et al. (2014) Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 5: 4157. doi: 10.1038/ncomms5157 24948391

4. Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, et al. (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461: 267–271. doi: 10.1038/nature08298 19710650

5. Chen S, Zhang G, Shao C, Huang Q, Liu G, et al. (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46: 253–260. doi: 10.1038/ng.2890 24487278

6. Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, et al. (2008) A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci USA 105: 2469–2474. doi: 10.1073/pnas.0712244105 18268317

7. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, et al. (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417: 559–563. 12037570

8. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, et al. (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99: 11778–11783. 12193652

9. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, et al. (2014) FOXL2 is a female sex-determining gene in the goat. Curr Biol 24: 404–408. doi: 10.1016/j.cub.2013.12.039 24485832

10. Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, et al. (2012) An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22: 1423–1428. doi: 10.1016/j.cub.2012.05.045 22727696

11. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, et al. (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109: 2955–2959. doi: 10.1073/pnas.1018392109 22323585

12. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, et al. (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8: e1002798. doi: 10.1371/journal.pgen.1002798 22807687

13. Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, et al. (2012) Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191: 163–170. doi: 10.1534/genetics.111.137497 22367037

14. Mank JE, Avise JC (2009) Evolutionary diversity and turn-over of sex determination in teleost fishes. Sex Dev 3: 60–67. doi: 10.1159/000223071 19684451

15. Ross JA, Urton JR, Boland J, Shapirom MD, Peichel CL (2009) Turnover of sex chromosomes in the stickleback fishes (gasterosteidae). PLoS Genet 5: e1000391. doi: 10.1371/journal.pgen.1000391 19229325

16. Bradley KM, Breyer JP, Melville DB, Broman KW, Knapik EW, et al. (2011) An SNP-Based Linkage Map for Zebrafish Reveals Sex Determination Loci. G3 (Bethesda) 1: 3–9.

17. Wilson CA, High SK, McCluskey BM, Amores A, Yan YL, et al. (2014) Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198: 1291–1308. doi: 10.1534/genetics.114.169284 25233988

18. Mair GC, Scott AG, Penman DJ, Beardmorem JA, Skibinski DO (1991) Sex determination in the genus Oreochromis: 1. Sex reversal, gynogenesis and triploidy in o. niloticus (L.). Theor Appl Genet 82: 144–152. doi: 10.1007/BF00226205 24213058

19. Baroiller JF, D'Cotta H, Bezault E, Wessels S, Hoerstgen-Schwark G (2009) Tilapia sex determination: Where temperature and genetics meet. Comp Biochem Physiol A Mol Integr Physiol 153: 30–38. doi: 10.1016/j.cbpa.2008.11.018 19101647

20. Lee BY, Penman DJ, Kocher TD (2003) Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim Genet 34: 379–383. 14510676

21. Eshel O, Shirak A, Weller JI, Slossman T, Hulata G, et al. (2011) Fine-mapping of a locus on linkage group 23 for sex determination in Nile tilapia (Oreochromis niloticus). Anim Genet 42: 222–224. doi: 10.1111/j.1365-2052.2010.02128.x 24725231

22. Sun YL, Jiang DN, Zeng S, Hu CJ, Ye K, et al. (2014) Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture 433: 19–27.

23. Eshel O, Shirak A, Dor L, Band M, Zak T, et al. (2014) Identification of male-specific amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genomics 15: 774. doi: 10.1186/1471-2164-15-774 25199625

24. Eshel O, Shirak A, Weller JI, Hulata G, Ron M (2012) Linkage and Physical Mapping of Sex Region on LG23 of Nile Tilapia (Oreochromis niloticus). G3. 2: 35–42. doi: 10.1534/g3.111.001545 22384380

25. Josso N, di Clemente N, Gouédard L (2001) Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol 179: 25–32. 11420127

26. Miura T, Miura C, Konda Y, Yamauchi K (2002) Spermatogenesis-preventing substance in Japanese eel. Development 129: 2689–2697. 12015296

27. Yoshinaga N, Shiraishi E, Yamamoto T, Iguchi T, Abe S, et al. (2004) Sexually dimorphic expression of a teleost homologue of Müllerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 322: 508–513. 15325259

28. Wu GC, Chiu PC, Lyu YS, Chang CF (2010) The expression of amh and amhr2 is associated with the development of gonadal tissue and sex change in the protandrous black porgy, Acanthopagrus schlegeli. Biol Reprod 83: 443–453. doi: 10.1095/biolreprod.110.084681 20505169

29. Morinaga C, Saito D, Nakamura S, Sasaki T, Asakawa S, et al. (2007) The hotei mutation of medaka in the anti-Müllerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci USA 104: 9691–9696. 17535919

30. Li MH, Wu FR, Xiong CQ, Zeng S, Yang SJ, et al. (2011) Construction of microarray fosmid library and its application in gene isolation in Nile tilapia, Oreochromis niloticus [in Chinese]. Journal of Fisheries of China 35: 28–34.

31. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, et al. (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375–381. doi: 10.1038/nature13726 25186727

32. Tao W, Yuan J, Zhou L, Sun L, Sun Y, et al. (2013) Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 8: e63604. doi: 10.1371/journal.pone.0063604 23658843

33. Li MH, Yang HH, Li MR, Sun YL, Jiang XL, et al. (2013) Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 154: 4814–4825. doi: 10.1210/en.2013-1451 24105480

34. Li M, Yang H, Zhao J, Fang L, Shi H, et al. (2014) Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9. Genetics 197: 591–599. doi: 10.1534/genetics.114.163667 24709635

35. Ezaz MT, Harvey SC, Boonphakdee C, Teale AJ, McAndrew BJ, et al. (2004) Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.). Mar Biotechnol 6:435–445. 15791488

36. Cnaani A, Kocher TD. (2008) Sex-linked markers and microsatellite locus duplication in the cichlid species Oreochromis tanganicae. Biol Lett. 4:700–3. doi: 10.1098/rsbl.2008.0286 18700198

37. Gammerdinger WJ, Conte MA, Acquah EA, Roberts RB, Kocher TD. (2014) Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus. BMC Genomics. 15:975. doi: 10.1186/1471-2164-15-975 25404257

38. Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, et al. (2008) Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78: 333–341. 17942796

39. Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayashi T, et al. (2007) DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci USA 104:3865–3870. 17360444

40. Wessels S, Sharifi RA, Luehmann LM, Rueangsri S, Krause I, et al. (2014) Allelic variant in the anti-Müllerian hormone gene leads to autosomal and temperature-dependent sex reversal in a selected Nile tilapia line. PLoS One. 9:e104795. doi: 10.1371/journal.pone.0104795 25157978

41. Böhne A, Sengstag T, Salzburger W (2014) Comparative transcriptomics in East African cichlids reveals sex and specied specific expression and new candidated for sex differentiation in fishes. Genome Biol Evol 6: 2567–2585. 25364805

42. Cutting AD, Ayers K, Davidson N, Oshlack A, Doran T, et al. (2014) Identification, expression, and regulation of anti-Müllerian hormone type-II receptor in the embryonic chicken gonad. Biol Reprod 90: 106. doi: 10.1095/biolreprod.113.116491 24621923

43. Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, et al. (2013) Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev Dyn 242: 388–399. doi: 10.1002/dvdy.23929 23335393

44. Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, et al. (2007) Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21: 712–725. 17192407

45. Guiguen Y, Fostier A, Piferrer F, Chang CF (2010) Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165: 352–366. doi: 10.1016/j.ygcen.2009.03.002 19289125

46. Okada E, Yoshimoto S, Ikeda N, Kanda H, Tamura K, et al. (2009) Xenopus W-linked DM-W induces Foxl2 and Cyp19 expression during ovary formation. Sex Dev 3: 38–42. doi: 10.1159/000200080 19339816

47. Matsumoto Y, Buemio A, Chu R, Vafaee M, Crews D (2013) Epigenetic control of gonadal aromatase (cyp19a1) in temperature-dependent sex determination of red-eared slider turtles. PLoS One 8: e63599. doi: 10.1371/journal.pone.0063599 23762231

48. Lambeth LS, Cummins DM, Doran TJ, Sinclair AH, Smith CA (2013) Overexpression of aromatase alone is sufficient for ovarian development in genetically male chicken embryos. PLoS One 8: e68362. doi: 10.1371/journal.pone.0068362 23840850

49. Coveney D, Shaw G, Renfree MB (2001) Estrogen-induced gonadal sex reversal in the tammar wallaby. Biol Reprod 65: 613–621. 11466233

50. Scheib D (1983) Effects and role of estrogens in avian gonadal differentiation. Differentiation 23: S87–S92. 6444180

51. Merchant-Larios H, Ruiz-Ramirez S, Moreno-Mendoza N, Marmolejo-Valencia A (1997) Correlation among thermo sensitive period, estradiol response, and gonad differentiation in the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol 107: 373–385. 9268618

52. Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197: 229–28.

53. Kobayashi T, Kajiura-Kobayashi H, Nagahama Y (2003) Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res 101: 289–294. 14684997

54. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, et al. (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139: 1130–1142. doi: 10.1016/j.cell.2009.11.021 20005806

55. Pannetier M, Fabre S, Batista F, Kocer A, Renault L, et al. (2006) FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrino. 36: 399–413.

56. Fleming NI, Knower KC, Lazarus KA, Fuller PJ, Simpson ER, et al. (2010) Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One 5: e14389. doi: 10.1371/journal.pone.0014389 21188138

57. di Clemente N, Ghaffari S, Pepinsky RB, Pieau C, Josso N, et al. (1992) A quantitative and interspecific test for biological activity of anti-müllerian hormone: the fetal ovary aromatase assay. Development 114: 721–727. 1319894

58. Nishikimi H, Kansaku N, Saito N, Usami M, Ohno Y, et al. (2000) Sex differentiation and mRNA expression of P450c17, P450arom and AMH in gonads of the chicken. Mol Reprod Dev 55: 20–30. 10602270

59. Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. doi: 10.1126/science.1231143 23287718

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#