#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees


Whether a developing embryo becomes male or female has significant downstream consequences. Depending on the species, sex can be determined by a wide variety of mechanisms. Sex determination systems can evolve rapidly, but how this occurs, and even how widespread the same mechanism is within a given taxonomic group, remains largely unknown. By experimentally mapping the sex determination architecture in the ant, Vollenhovia emeryi, we found that the well-characterized honey bee sex determination locus originated more than 100 million years ago. However, we also found an additional locus that has no homology to the first. Currently uncharacterized, this locus suggests that different species may use a variety of complementary sex determination mechanisms. Yet, core elements of the complementary sex determination machinery appear to be ancient.


Vyšlo v časopise: QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005656
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005656

Souhrn

Whether a developing embryo becomes male or female has significant downstream consequences. Depending on the species, sex can be determined by a wide variety of mechanisms. Sex determination systems can evolve rapidly, but how this occurs, and even how widespread the same mechanism is within a given taxonomic group, remains largely unknown. By experimentally mapping the sex determination architecture in the ant, Vollenhovia emeryi, we found that the well-characterized honey bee sex determination locus originated more than 100 million years ago. However, we also found an additional locus that has no homology to the first. Currently uncharacterized, this locus suggests that different species may use a variety of complementary sex determination mechanisms. Yet, core elements of the complementary sex determination machinery appear to be ancient.


Zdroje

1. Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer. Curr Opin Genet Dev. 2010;20: 376–383. doi: 10.1016/j.gde.2010.05.001 20570131

2. Beukeboom LW, Perrin N. The evolution of sex determination. Oxford University Press; 2014.

3. Crozier RH. Heterozygosity and sex determination in haplo-diploidy. Am Nat. 1971;105: 399–412. doi: 10.2307/2459509

4. Zayed A, Packer L, Michener CD. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA. 2005;102: 10742–10746. doi: 10.2307/3376153 16020532

5. Conover DO, Van Voorhees DA, Ehtisham A. Sex ratio selection and the evolution of environmental sex determination in laboratory populations of Menidia menidia. Evolution. 1992;46: 1722–1730. doi: 10.2307/2410026

6. Rigaud T, Juchault P, Mocquard JP. The evolution of sex determination in isopod crustaceans. Bioessays. 1997.

7. Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman T-L, et al. Sex determination: why so many ways of doing it? PLoS Biol. 2014;12: e1001899. doi: 10.1371/journal.pbio.1001899 24983465

8. Heimpel GE, de Boer JG. Sex determination in the hymenoptera. Annu Rev Entomol. 2008;53: 209–230. doi: 10.1146/annurev.ento.53.103106.093441 17803453

9. Cline TW, Meyer BJ. Vive la difference: males vs females in flies vs worms. Annu Rev Genet. 1996;30: 637–702. doi: 10.1146/annurev.genet.30.1.637 8982468

10. Molbo D, Parker ED. Mating structure and sex ratio variation in a natural population of Nasonia vitripennis. Proc R Soc Lond B Biol. 1996;263: 1703–1709. doi: 10.1098/rspb.1996.0249

11. Beukeboom LW, van de Zande L. Genetics of sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea). J Genet. 2010;89: 333–339. 20877000

12. Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature. 2008;454: 519–522. doi: 10.1038/nature07052 18594516

13. Privman E, Wurm Y, Keller L. Duplication and concerted evolution in a master sex determiner under balancing selection. Proc R Soc Lond B Biol. 2013;280: 20122968. doi: 10.1098/rspb.2012.2968

14. Schmieder S, Colinet D, Poirié M. Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nat Comm. 2012;3: 895. doi: 10.1038/ncomms1898

15. Huang Y-C, Nipitwattanaphon M, Lee C-C, Wang J. Mapping a novel sex determination gene in ants. IUSSI Congress, Cairns; 2014. p. 197.

16. Koch V, Nissen I, Schmitt BD, Beye M. Independent evolutionary origin of fem paralogous genes and complementary sex determination in hymenopteran insects. PLoS ONE. 2014;9: e91883. doi: 10.1371/journal.pone.0091883 24743790

17. Biewer M, Schlesinger F, Hasselmann M. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species. Front Genet; 2015;6: 124. doi: 10.3389/fgene.2015.00124 25914717

18. Schmidt AM, Linksvayer TA, Boomsma JJ, Pedersen JS. No benefit in diversity? The effect of genetic variation on survival and disease resistance in a polygynous social insect. Ecol Entomol. 2011;36: 751–759. doi: 10.1111/j.1365-2311.2011.01325.x

19. Schrempf A, Aron S, Heinze J. Sex determination and inbreeding depression in an ant with regular sib-mating. Heredity. 2006;97: 75–80. doi: 10.1038/sj.hdy.6800846 16705320

20. Kobayashi K, Hasegawa E, Ohkawara K. Clonal reproduction by males of the ant Vollenhovia emeryi (Wheeler). Entomol Sci. 2008. doi: 10.1111/j.1479-8298.2008.00272.x/pdf

21. Ohkawara K, Nakayama M, Satoh A, Trindl A, Heinze J. Clonal reproduction and genetic caste differences in a queen-polymorphic ant, Vollenhovia emeryi. Biol Let. 2006;2: 359–363. doi: 10.1098/rsbl.2006.0491

22. Okamoto M, Kobayashi K, Hasegawa E, Ohkawara K. Sexual and asexual reproduction of queens in a myrmicine ant, Vollenhovia emeryi (Hymenoptera: Formicidae). Myrmecol News. 2015;21: 13–17.

23. Kinomura K, Yamauchi K. Frequent occurrence of gynandromorphs in the natural population of the ant Vollenhovia emeryi (Hymenoptera: Formicidae). Insect Soc. 1994;41: 273–278.

24. Smith CR, Helms Cahan S, Kemena C, Brady SG, Yang W, Bornberg-Bauer E, et al. How do genomes create novel phenotypes? Insights from the loss of the worker caste in ant social parasites. Mol Biol Evol. 2015. in press.

25. Imai HT. The chromosome observation techniques of ants and the chromosomes of Formicinae and Myrmicinae. Act Hymenop. 1966; 2: 119–131

26. Hasselmann M, Lechner S, Schulte C, Beye M. Origin of a function by tandem gene duplication limits the evolutionary capability of its sister copy. Proc Natl Acad Sci USA. 2010;107: 13378–13383. doi: 10.1073/pnas.1005617107 20624976

27. Beye M, Hasselmann M, Fondrk MK, Page RE Jr, Omholt SW. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell. 2003;114: 419–429. 12941271

28. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346: 763–767. doi: 10.1126/science.1257570 25378627

29. Privman E, Wurm Y, Keller L. Duplication and concerted evolution in a master sex determiner under balancing selection. Proc R Soc Lond B Biol. 2013;280: 20122968–20122968. doi: 10.1098/rspb.2012.2968

30. Crozier RH. Heterozygosity and sex determination in haplo-diploidy. Am Nat. 1971;105: 399–412.

31. Ward PS, Brady SG, Fisher BL, Schultz TR. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). System Entom. 2015;40: 61–81. doi: 10.1111/syen.12090

32. Okamoto M, Ohkawara K. Egg production and caste allocation in the clonally reproductive ant Vollenhovia emeryi. Behav Ecol. 2010;21: 1005–1010. doi: 10.1093/beheco/arq093

33. Kobayashi K, Hasegawa E, Ohkawara K. Clonal reproduction by males of the ant Vollenhovia emeryi (Wheeler). Entomol Sci. 2008;11: 167–172. doi: 10.1111/j.1479-8298.2008.00272.x

34. Pearcy M, Goodisman MAD, Keller L. Sib mating without inbreeding in the longhorn crazy ant. Proc R Soc Lond B Biol. 2011;278: 2677–2681. doi: 10.1038/hdy.2009.169

35. Rey O, Loiseau A, Facon B, Foucaud J, Orivel J, Cornuet J-M, et al. Meiotic recombination dramatically decreased in thelytokous queens of the little fire ant and their sexually produced workers. Mol Biol Evol. 2011;28: 2591–2601. doi: 10.1093/molbev/msr082 21459760

36. Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, et al. The genome of the clonal raider ant Cerapachys biroi. Curr Biol. 2014;24: 451–458. doi: 10.1016/j.cub.2014.01.018 24508170

37. Rabeling C, Kronauer DJC. Thelytokous parthenogenesis in eusocial Hymenoptera. Annu Rev Entomol. 2013;58: 273–292. doi: 10.1146/annurev-ento-120811-153710 23072461

38. Mikheyev A, Bresson S, Conant P. Single-queen introductions characterize regional and local invasions by the facultatively clonal little fire ant Wasmannia auropunctata. Mol Ecol. 2009;18: 2937–2944. doi: 10.1111/j.1365-294X.2009.04213.x 19538342

39. Miyakawa MO, Mikheyev AS. Males are here to stay: fertilization enhances viable egg production by clonal queens of the little fire ant (Wasmannia auropunctata). Sci Nat. 2015;102: 1–7. doi: 10.1007/s00114-015-1265-8

40. de Boer JG, Ode PJ, Rendahl AK, Vet LEM, Whitfield JB, Heimpel GE. Experimental support for multiple-locus complementary sex determination in the parasitoid Cotesia vestalis. Genetics. 2008;180: 1525–1535. doi: 10.1534/genetics.107.083907 18791258

41. Ohkawara K, Ishii H, Fukushima Y, Yamauchi K, Heinze J. Queen polymorphism and reproductive behaviour in myrmicine ant. Proc XIV Int Congr IUSSI. 2002; p. 206.

42. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30: 614–620. doi: 10.1093/bioinformatics/btt593 24142950

43. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437: 376–380. doi: 10.1038/nature03959 16056220

44. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27: 578–579. doi: 10.1093/bioinformatics/btq683 21149342

45. Aird SD, Watanabe Y, Villar-Briones A, Roy MC, Terada K, Mikheyev AS. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics. 2013;14: 790. doi: 10.1186/1471-2164-14-790 24224955

46. Thibaud-Nissen F, Souvorov A, Murphy T, DiCuccio M, Kitts P. Eukaryotic Genome Annotation Pipeline. The NCBI Handbook. 2nd ed. Bethesda, MD; 2013.

47. Tin MMY, Rheindt FE, Cros E, Mikheyev AS. Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy. Mol Ecol Res. 2014. doi: 10.1111/1755-0998.12314

48. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. doi: 10.1038/nmeth.1923 22388286

49. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. 2010.

50. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27: 2987–2993. doi: 10.1093/bioinformatics/btr509 21903627

51. Broman KW, Wu H, Sen Ś, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19: 889–890. doi: 10.1093/bioinformatics/btg112 12724300

52. Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. Kruglyak L, editor. Plos Genet. Public Library of Science; 2008;4: e1000212. doi: 10.1371/journal.pgen.1000212 18846212

53. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2013;11: 11.10.1–11.10.33. doi: 10.1002/0471250953.bi1110s43

54. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics; 2012;28: 1647–1649. doi: 10.1093/bioinformatics/bts199 22543367

55. Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30: 3059–3066. doi: 10.1093/nar/gkf436 12136088

56. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. doi: 10.1093/bioinformatics/btl446 16928733

57. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. Plos Genet. 2012;8: e1002764. doi: 10.1371/journal.pgen.1002764 22807683

58. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26: 2455–2457. doi: 10.1093/bioinformatics/btq429 20671151

59. Foitzik S, Haberl M, Gadau J, Heinze J. Mating frequency of Leptothorax nylanderi ant queens determined by microsatellite analysis. Insect Soc. 1997;44: 219–227.

60. Hulce D, Li X, Snyder-Leiby T. GeneMarker genotyping software: tools to increase the statistical power of DNA fragment analysis. J Biomol Tech. 2011;22: S35.

61. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28: 2537–2539. doi: 10.1093/bioinformatics/bts460 22820204

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#