Encodes Dual Oxidase, Which Acts with Heme Peroxidase Curly Su to Shape the Adult Wing
Fruit fly geneticists rely on a handful of dominant mutations that modify adult morphology in a way that is easy to spot, like changing the shape of the fly’s wings, eyes or bristles. One of the first such mutants identified in the early days of fly genetics and to this day likely the most widely used mutation, is Curly, which causes an upward curvature in the adult wings. Despite its importance as a marker, the genetic cause of Curly has remained unknown. Here, we reveal that Curly mutations occur in the gene duox, which encodes a ROS-generating enzyme. ROS once thought to be merely harmful by-products of metabolism, can also have beneficial purposes. Here we provide evidence that Duox generates ROS to help form and stabilize the wings of fruit flies. Furthermore, we identify a second enzyme, Cysu, which uses the ROS generated by Duox to crosslink proteins in the wing, thereby stabilizing and shaping its structure. Duox occurs in numerous organisms, including humans and fulfills a number of other functions, in particular in immunity and pathogen defense. With this new knowledge, Curly mutations will provide an excellent tool to study and understand the roles Duox plays in a variety of biological contexts.
Vyšlo v časopise:
Encodes Dual Oxidase, Which Acts with Heme Peroxidase Curly Su to Shape the Adult Wing. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005625
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005625
Souhrn
Fruit fly geneticists rely on a handful of dominant mutations that modify adult morphology in a way that is easy to spot, like changing the shape of the fly’s wings, eyes or bristles. One of the first such mutants identified in the early days of fly genetics and to this day likely the most widely used mutation, is Curly, which causes an upward curvature in the adult wings. Despite its importance as a marker, the genetic cause of Curly has remained unknown. Here, we reveal that Curly mutations occur in the gene duox, which encodes a ROS-generating enzyme. ROS once thought to be merely harmful by-products of metabolism, can also have beneficial purposes. Here we provide evidence that Duox generates ROS to help form and stabilize the wings of fruit flies. Furthermore, we identify a second enzyme, Cysu, which uses the ROS generated by Duox to crosslink proteins in the wing, thereby stabilizing and shaping its structure. Duox occurs in numerous organisms, including humans and fulfills a number of other functions, in particular in immunity and pathogen defense. With this new knowledge, Curly mutations will provide an excellent tool to study and understand the roles Duox plays in a variety of biological contexts.
Zdroje
1. Ward L. The Genetics of Curly Wing in Drosophila. Another Case of Balanced Lethal Factors. Genetics. 1923;8(3):276–300. 17246014
2. Gronke S, Bickmeyer I, Wunderlich R, Jackle H, Kuhnlein RP. Curled encodes the Drosophila homolog of the vertebrate circadian deadenylase Nocturnin. Genetics. 2009;183(1):219–32. doi: 10.1534/genetics.109.105601 19581445
3. Waddington C. The genetic control of wing development in Drosophila. Journal of Genetics. 1940;41:75–139.
4. Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science. 2010;327(5970):1223–8. doi: 10.1126/science.1182228 20203043
5. Sturtevant AH, Novitski E. The Homologies of the Chromosome Elements in the Genus Drosophila. Genetics. 1941;26(5):517–41. 17247021
6. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews. 2007;87(1):245–313. doi: 10.1152/physrev.00044.2005 17237347
7. Kim SH, Lee WJ. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Frontiers in cellular and infection microbiology. 2014;3:116. doi: 10.3389/fcimb.2013.00116 24455491
8. De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G, et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem. 2000;275(30):23227–33. doi: 10.1074/jbc.M000916200 10806195
9. Dupuy C, Ohayon R, Valent A, Noel-Hudson MS, Deme D, Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem. 1999;274(52):37265–9. 10601291
10. Anh NT, Nishitani M, Harada S, Yamaguchi M, Kamei K. Essential role of Duox in stabilization of Drosophila wing. J Biol Chem. 2011;286(38):33244–51. doi: 10.1074/jbc.M111.263178 21808060
11. Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol. 2001;154(4):879–91. doi: 10.1083/jcb.200103132 11514595
12. Wong JL, Creton R, Wessel GM. The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell. 2004;7(6):801–14. doi: 10.1016/j.devcel.2004.10.014 15572124
13. Littleton JT, Bellen HJ. Genetic and phenotypic analysis of thirteen essential genes in cytological interval 22F1-2; 23B1-2 reveals novel genes required for neural development in Drosophila. Genetics. 1994;138(1):111–23. 8001779
14. Cook K. Mutations from Jim Kennison. In: FlyBase, editor. http://flybase.org/reports/FBrf0206482.html2008.
15. Magni G, Orsomando G, Raffaelli N. Structural and functional properties of NAD kinase, a key enzyme in NADP biosynthesis. Mini Rev Med Chem. 2006;6(7):739–46. 16842123
16. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118(2):401–15. 8223268
17. Bello BC, Hirth F, Gould AP. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron. 2003;37(2):209–19. 12546817
18. Kiger JA Jr., Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Green MM. Tissue remodeling during maturation of the Drosophila wing. Dev Biol. 2007;301(1):178–91. doi: 10.1016/j.ydbio.2006.08.011 16962574
19. Hughes AL. Evolution of the Heme Peroxidases of Culicidae (Diptera). Psyche. 2012;2012.
20. Moussian B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol. 2010;40(5):363–75. doi: 10.1016/j.ibmb.2010.03.003 20347980
21. Doctor J, Fristrom D, Fristrom JW. The pupal cuticle of Drosophila: biphasic synthesis of pupal cuticle proteins in vivo and in vitro in response to 20-hydroxyecdysone. J Cell Biol. 1985;101(1):189–200. 3891759
22. Debeurme F, Picciocchi A, Dagher MC, Grunwald D, Beaumel S, Fieschi F, et al. Regulation of NADPH oxidase activity in phagocytes: relationship between FAD/NADPH binding and oxidase complex assembly. J Biol Chem. 2010;285(43):33197–208. doi: 10.1074/jbc.M110.151555 20724480
23. Aliverti A, Piubelli L, Zanetti G, Lubberstedt T, Herrmann RG, Curti B. The role of cysteine residues of spinach ferredoxin-NADP+ reductase As assessed by site-directed mutagenesis. Biochemistry. 1993;32(25):6374–80. 8518283
24. Nozawa K. The effects of the environmental conditions on Curly expressivity in Drosophila melanogaster. The Japanese Journal of Genetics. 1965;31(6):163–71.
25. Pavelka J, Jindrak L. Mechanism of the fluorescent light induced suppression of Curly phenotype in Drosophila melanogaster. Bioelectromagnetics. 2001;22(6):371–83. 11536279
26. Ha EM, Oh CT, Bae YS, Lee WJ. A direct role for dual oxidase in Drosophila gut immunity. Science. 2005;310(5749):847–50. doi: 10.1126/science.1117311 16272120
27. Meitzler JL, Brandman R, Ortiz de Montellano PR. Perturbed heme binding is responsible for the blistering phenotype associated with mutations in the Caenorhabditis elegans dual oxidase 1 (DUOX1) peroxidase domain. J Biol Chem. 2010;285(52):40991–1000. doi: 10.1074/jbc.M110.170902 20947510
28. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 2009;23(19):2333–44. doi: 10.1101/gad.1827009 19797770
29. Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010;327(5973):1644–8. doi: 10.1126/science.1184008 20223948
30. Yang X, Smith AA, Williams MS, Pal U. A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector. J Biol Chem. 2014;289(18):12813–22. doi: 10.1074/jbc.M113.538272 24662290
31. Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, Cavallaro A, et al. A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics. 2009;182(4):1089–100. doi: 10.1534/genetics.109.103630 19487563
32. Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods. 2011;8(9):737–43. 21985007
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- UFBP1, a Key Component of the Ufm1 Conjugation System, Is Essential for Ufmylation-Mediated Regulation of Erythroid Development
- Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis
- Ernst Rüdin’s Unpublished 1922-1925 Study “Inheritance of Manic-Depressive Insanity”: Genetic Research Findings Subordinated to Eugenic Ideology
- Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing