Convergent Evolution During Local Adaptation to Patchy Landscapes
Often, a large species range will include patches where the species differs because it has adapted to locally differing conditions. For instance, rock pocket mice are often found with a coat color that matches the rocks they live in, these color differences are controlled genetically, and mice that don’t match the local rock color are more likely to be eaten by predators. Sometimes, similar genetic changes have occurred independently in different patches, suggesting that there were few accessible ways to evolve the locally adaptive form. However, the genetic basis could also be shared if migrants carry the locally beneficial genotypes between nearby patches, despite being at a disadvantage between the patches. We use a mathematical model of random migration to determine how quickly adaptation is expected to occur through new mutation and through migration from other patches, and study in more detail what we would expect successful migrations between patches to look like. The results are useful for determining whether similar adaptations in different locations are likely to have the same genetic basis or not, and more generally in understanding how species adapt to patchy, heterogeneous landscapes.
Vyšlo v časopise:
Convergent Evolution During Local Adaptation to Patchy Landscapes. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005630
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005630
Souhrn
Often, a large species range will include patches where the species differs because it has adapted to locally differing conditions. For instance, rock pocket mice are often found with a coat color that matches the rocks they live in, these color differences are controlled genetically, and mice that don’t match the local rock color are more likely to be eaten by predators. Sometimes, similar genetic changes have occurred independently in different patches, suggesting that there were few accessible ways to evolve the locally adaptive form. However, the genetic basis could also be shared if migrants carry the locally beneficial genotypes between nearby patches, despite being at a disadvantage between the patches. We use a mathematical model of random migration to determine how quickly adaptation is expected to occur through new mutation and through migration from other patches, and study in more detail what we would expect successful migrations between patches to look like. The results are useful for determining whether similar adaptations in different locations are likely to have the same genetic basis or not, and more generally in understanding how species adapt to patchy, heterogeneous landscapes.
Zdroje
1. Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013 Nov;14(11):751–764. 24105273
2. Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. Parallel Molecular Evolution in an Herbivore Community. Science. 2012;337(6102):1634–1637. Available from: http://www.sciencemag.org/content/337/6102/1634.abstract. doi: 10.1126/science.1226630 23019645
3. Martin A, Orgogozo V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution. 2013;67(5):1235–1250. Available from: http://dx.doi.org/10.1111/evo.12081. 23617905
4. Arendt J, Reznick D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol. 2008 Jan;23(1):26–32. doi: 10.1016/j.tree.2007.09.011 18022278
5. Pennings PS, Hermisson J. Soft Sweeps II—Molecular Population Genetics of Adaptation from Recurrent Mutation or Migration. Mol Biol Evol. 2006;p. msj117. Available from: http://mbe.oxfordjournals.org/cgi/content/abstract/msj117v1.
6. Ralph P, Coop G. Parallel Adaptation: One or Many Waves of Advance of an Advantageous Allele? Genetics. 2010;186(2):647–668. Available from: http://www.genetics.org/cgi/content/abstract/186/2/647. doi: 10.1534/genetics.110.119594 20660645
7. Orr HA, Betancourt AJ. Haldane’s sieve and adaptation from the standing genetic variation. Genetics. 2001 Feb;157(2):875–884. 11157004
8. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005 Apr;169(4):2335–2352. doi: 10.1534/genetics.104.036947 15716498
9. Slatkin M. Gene Flow and Selection in a Cline. Genetics. 1973;75(4):733–756. Available from: http://www.genetics.org/cgi/content/abstract/75/4/733. 4778791
10. Kruckeberg AR. Intraspecific Variability in the Response of Certain Native Plant Species to Serpentine Soil. American Journal of Botany. 1951;38(6):pp. 408–419. doi: 10.2307/2438248
11. Macnair MR. Why the evolution of resistance to anthropogenic toxins normally involves major gene changes: the limits to natural selection. Genetica. 1991;84(3):213–219. doi: 10.1007/BF00127250
12. Schat H, Vooijs R, Kuiper E. Identical Major Gene Loci for Heavy Metal Tolerances that Have Independently Evolved in Different Local Populations and Subspecies of Silene vulgaris. Evolution. 1996;50(5):pp. 1888–1895. doi: 10.2307/2410747
13. Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet. 2010 Jan;42(3):260–3. doi: 10.1038/ng.515 20101244
14. Benson SB. Concealing coloration among some desert rodents of the southwestern United States. No. v. 40 in University of California publications in zoology. University of California Press; 1933. Available from: http://books.google.com/books?id=Lis-AQAAIAAJ.
15. Dice LR, Blossom PM. Studies of Mammalian Ecology in Southwestern North America With Special Attention to the Colors of Desert Mammals. Carnegie Institution; 1937.
16. Kaufman DW. Adaptive Coloration in Peromyscus polionotus: Experimental Selection by Owls. Journal of Mammalogy. 1974;55(2):pp. 271–283. doi: 10.2307/1378997
17. Hoekstra HE, Nachman MW. Different genes underlie adaptive melanism in different populations of rock pocket mice. Mol Ecol. 2003 May;12:1185–1194. Available from: http://www3.interscience.wiley.com/journal/118890526/abstract. doi: 10.1046/j.1365-294X.2003.01788.x 12694282
18. Dice LR. Ecologic and Genetic Variability within Species of Peromyscus. The American Naturalist. 1940;74(752):pp. 212–221. Available from: http://www.jstor.org/stable/2457573. doi: 10.1086/280889
19. Steiner CC, Rompler H, Boettger LM, Schoneberg T, Hoekstra HE. The Genetic Basis of Phenotypic Convergence in Beach Mice: Similar Pigment Patterns but Different Genes. Mol Biol Evol. 2009;26(1):35–45. Available from: http://mbe.oxfordjournals.org/cgi/content/abstract/26/1/35. doi: 10.1093/molbev/msn218 18832078
20. Kingsley EP, Manceau M, Wiley CD, Hoekstra HE. Melanism in Peromyscus is caused by independent mutations in agouti. PLoS ONE. 2009;4:e6435. doi: 10.1371/journal.pone.0006435 19649329
21. Rosenblum EB, Römpler H, Schöneberg T, Hoekstra HE. Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proceedings of the National Academy of Sciences. 2010;107(5):2113–2117. Available from: http://www.pnas.org/content/107/5/2113.abstract. doi: 10.1073/pnas.0911042107
22. Levin SA, Muller-Landau HC, Nathan R, Chave J. The Ecology and Evolution of Seed Dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst. 2003;34:575–604. doi: 10.1146/annurev.ecolsys.34.011802.132428
23. Hallatschek O, Fisher DS. Acceleration of evolutionary spread by long-range dispersal. Proc Natl Acad Sci U S A. 2014 Nov;111(46):4911–4919. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25368183. doi: 10.1073/pnas.1404663111
24. Haldane JBS. The theory of a cline. J Genet. 1948 Jan;48(3):277–284. doi: 10.1007/BF02986626 18905075
25. Fisher RA. Gene Frequencies in a Cline Determined by Selection and Diffusion. Biometrics. 1950;6(4):pp. 353–361. doi: 10.2307/3001780 14791572
26. Nagylaki T. Conditions for the existence of clines. Genetics. 1975;80(3):595–615. Available from: http://www.genetics.org/content/80/3/595.abstract.
27. Conley C. An application of Wazewski’s method to a non-linear boundary value problem which arises in population genetics. Journal of Mathematical Biology. 1975;2(3):241–249. doi: 10.1007/BF00277153
28. Lenormand T. Gene flow and the limits to natural selection. Trends in Ecology & Evolution. 2002;17(4):183—189. doi: 10.1016/S0169-5347(02)02497-7
29. Barton NH. The probability of establishment of an advantageous mutant in a subdivided population. Genetics Research. 1987;50(1):35–40. doi: 10.1017/S0016672300023314
30. Pollak E. On the Survival of a Gene in a Subdivided Population. Journal of Applied Probability. 1966;3(1):142–155. doi: 10.2307/3212043
31. Haldane JBS. A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation. Mathematical Proceedings of the Cambridge Philosophical Society. 1927 7;23(07):838–844. doi: 10.1017/S0305004100015644
32. Fisher RA. The genetical theory of natural selection. Oxford: Oxford University Press; 1930. Available from: http://www.archive.org/details/geneticaltheoryo031631mbp.
33. Maruyama T. On the fixation probability of mutant genes in a subdivided population. Genetics Research. 1970;15(02):221–225. doi: 10.1017/S0016672300001543
34. Cherry JL, Wakeley J. A diffusion approximation for selection and drift in a subdivided population. Genetics. 2003 Jan;163(1):421–428. 12586727
35. Cantrell RS, Cosner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics. 1989 0;112(3–4):293–318. doi: 10.1017/S030821050001876X
36. Lou Y, Yanagida E. Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Japan J Indust Appl Math. 2006;23(3):275–292. Available from: http://projecteuclid.org/euclid.jjiam/1197390801. doi: 10.1007/BF03167595
37. NEQwiki. NEQwiki, the nonlinear equations encyclopedia; 2013. Accessed December 17, 2014. Available from: http://www.primat.mephi.ru/wiki/ow.asp?Korteweg-de_Vries_equation.
38. Jagers P. Branching processes with biological applications. Wiley Series in Probability and Statistics: Applied Probability and Statistics Section Series. Wiley; 1975.
39. Geiger J. Elementary New Proofs of Classical Limit Theorems for Galton-Watson Processes. Journal of Applied Probability. 1999;36(2):pp. 301–309. Available from: http://www.jstor.org/stable/3215457. doi: 10.1239/jap/1032374454
40. Aldous DJ. Exchangeability and related topics. In: École d’été de probabilités de Saint-Flour, XIII—1983. vol. 1117 of Lecture Notes in Math. Berlin: Springer; 1985. p. 1–198. Available from: http://www.springerlink.com/content/c31v17440871210x/fulltext.pdf.
41. Donnelly P, Joyce P. Continuity and weak convergence of ranked and size-biased permutations on the infinite simplex. Stochastic Process Appl. 1989;31(1):89–103. doi: 10.1016/0304-4149(89)90104-X
42. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4407212. doi: 10.1017/S0016672300014634
43. Barton NH, Etheridge AM, Kelleher J, Véber A. Genetic hitchhiking in spatially extended populations. Theoretical Population Biology. 2013;(0):–. Available from: http://www.sciencedirect.com/science/article/pii/S0040580912001359.
44. Barton N. Gene flow past a cline. Heredity. 1979 Dec;43(3):333–339. doi: 10.1038/hdy.1979.86
45. Borodin AN, Salminen P. Handbook of Brownian motion: facts and formulae. Springer; 2002.
46. Nachman MW, Hoekstra HE, D’Agostino SL. The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A. 2003 Apr;100(9):5268–5273. doi: 10.1073/pnas.0431157100 12704245
47. Hoekstra HE, Krenz JG, Nachman MW. Local adaptation in the rock pocket mouse (Chaetodipus intermedius): natural selection and phylogenetic history of populations. Heredity. 2005 Nov;94(2):217–228. doi: 10.1038/sj.hdy.6800600 15523507
48. Hoekstra HE, Drumm KE, Nachman MW. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution. 2004 Jun;58(6):1329–1341. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2004.tb01711.x/abstract. doi: 10.1554/03-418 15266981
49. French NR, Tagami TY, Hayden P. Dispersal in a Population of Desert Rodents. Journal of Mammalogy. 1968;49(2):pp. 272–280. doi: 10.2307/1377984
50. Allred DM, Beck DE. Range of Movement and Dispersal of Some Rodents at the Nevada Atomic Test Site. Journal of Mammalogy. 1963;44(2):pp. 190–200. doi: 10.2307/1377452
51. Hoekstra HE. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity (Edinb). 2006 Sep;97(3):222–234. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16823403. doi: 10.1038/sj.hdy.6800861
52. Messer PW, Petrov DA. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol (Amst). 2013 Nov;28(11):659–669. doi: 10.1016/j.tree.2013.08.003
53. Wilson BA, Petrov DA, Messer PW. Soft selective sweeps in complex demographic scenarios. Genetics. 2014 Oct;198(2):669–684. doi: 10.1534/genetics.114.165571 25060100
54. Ralph PL, Coop G. The role of standing variation in geographic convergent adaptation. The American Naturalist. 2015;.
55. Slatkin M, Wiehe T. Genetic hitch-hiking in a subdivided population. Genet Res. 1998 Apr;71(2):155–160. doi: 10.1017/S001667239800319X 9717437
56. Kim Y, Maruki T. Hitchhiking effect of a beneficial mutation spreading in a subdivided population. Genetics. 2011 Sep;189(1):213–226. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176130/. doi: 10.1534/genetics.111.130203 21705748
57. Barton NH. Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci. 2000 Nov;355(1403):1553–1562. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692896/. doi: 10.1098/rstb.2000.0716 11127900
58. Reynolds AM, Rhodes CJ. The Lévy flight paradigm: random search patterns and mechanisms. Ecology. 2009 Apr;90(4):877–887. doi: 10.1890/08-0153.1 19449680
59. Censky EJ, Hodge K, Dudley J. Over-water dispersal of lizards due to hurricanes. Nature. 1998 Oct;395(6702):556–556. doi: 10.1038/26886
60. Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A. Mechanisms of long-distance seed dispersal. Trends in Ecology & Evolution. 2008;23(11):638—647. Available from: http://www.sciencedirect.com/science/article/pii/S0169534708002723. doi: 10.1016/j.tree.2008.08.003
61. Cantrell RS, Cosner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments. II. SIAM J Math Anal. 1991;22(4):1043–1064. doi: 10.1137/0522068
62. Sexton JP, Hangartner SB, Hoffmann AA. Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution. 2013;Available from: http://dx.doi.org/10.1111/evo.12258. 24111567
63. Kondrashov AS. Accumulation of Dobzhansky–Muller incompatibilities within a spatially structured population. Evolution. 2003 Jan;57(1):151–153. doi: 10.1554/0014-3820(2003)057%5B0151:AODMIW%5D2.0.CO;2 12643575
64. Kolmogorov A, Petrovskii I, Piscunov N. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. In: Selected Works of A.N. Kolmogorov: Mathematics and mechanics. vol. 25 of Mathematics and its Applications (Soviet Series). Dordrecht: Kluwer Academic Publishers Group; 1991. p. 1–25.
65. Fisher R. The wave of advance of advantageous genes. Ann Eugenics. 1937;7:353–369. Available from: http://digital.library.adelaide.edu.au/coll/special/fisher/152.pdf. doi: 10.1111/j.1469-1809.1937.tb02153.x
66. Etheridge AM. An introduction to superprocesses. vol. 20 of University Lecture Series. Providence, RI: American Mathematical Society; 2000.
67. Dawson DA. Measure-valued Markov processes. In: École d’Été de Probabilités de Saint-Flour XXI—1991. vol. 1541 of Lecture Notes in Math. Berlin: Springer; 1993. p. 1–260.
68. Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. Seventh ed. Elsevier/Academic Press, Amsterdam; 2007. Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- UFBP1, a Key Component of the Ufm1 Conjugation System, Is Essential for Ufmylation-Mediated Regulation of Erythroid Development
- Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis
- Genus-Wide Comparative Genomics of Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin
- Ernst Rüdin’s Unpublished 1922-1925 Study “Inheritance of Manic-Depressive Insanity”: Genetic Research Findings Subordinated to Eugenic Ideology