A Single Element Maintains Repression of the Key Developmental Regulator
In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element −1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the −1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the −1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed.
Vyšlo v časopise:
A Single Element Maintains Repression of the Key Developmental Regulator. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001103
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001103
Souhrn
In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element −1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the −1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the −1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed.
Zdroje
1. ArnoneMI
DavidsonEH
1997 The hardwiring of development: organization and function of genomic regulatory systems. Development 124 1851 1864
2. SonejiS
HuangS
LooseM
DonaldsonIJ
PatientR
2007 Inference, validation, and dynamic modeling of transcription networks in multipotent hematopoietic cells. Ann N Y Acad Sci 1106 30 40
3. StrahlBD
AllisCD
2000 The language of covalent histone modifications. Nature 403 41 45
4. MohnF
SchubelerD
2009 Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25 129 136
5. BurchJB
2005 Regulation of GATA gene expression during vertebrate development. Semin Cell Dev Biol 16 71 81
6. BresnickEH
MartowiczML
PalS
JohnsonKD
2005 Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol 205 1 9
7. KanekoH
ShimizuR
YamamotoM.
GATA factor switching during erythroid differentiation. Curr Opin Hematol 17 163 168
8. TsaiFY
OrkinSH
1997 Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89 3636 3643
9. TsaiFY
KellerG
KuoFC
WeissM
ChenJ
1994 An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371 221 226
10. FujiwaraY
BrowneCP
CunniffK
GoffSC
OrkinSH
1996 Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A 93 12355 12358
11. TingCN
OlsonMC
BartonKP
LeidenJM
1996 Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384 474 478
12. BriegelK
LimKC
PlankC
BeugH
EngelJD
1993 Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev 7 1097 1109
13. PersonsDA
AllayJA
AllayER
AshmunRA
OrlicD
1999 Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93 488 499
14. HeyworthC
GaleK
DexterM
MayG
EnverT
1999 A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes Dev 13 1847 1860
15. FujiwaraT
O'GeenH
KelesS
BlahnikK
LinnemannAK
2009 Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 36 667 681
16. WozniakRJ
BresnickEH
2008 Epigenetic control of complex loci during erythropoiesis. Curr Top Dev Biol 82 55 83
17. GrassJA
BoyerME
PalS
WuJ
WeissMJ
2003 GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci U S A 100 8811 8816
18. PalS
CantorAB
JohnsonKD
MoranTB
BoyerME
2004 Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci U S A 101 980 985
19. MartowiczML
GrassJA
BoyerME
GuendH
BresnickEH
2005 Dynamic GATA factor interplay at a multicomponent regulatory region of the GATA-2 locus. J Biol Chem 280 1724 1732
20. MartowiczML
GrassJA
BresnickEH
2006 GATA-1-mediated transcriptional repression yields persistent transcription factor IIB-chromatin complexes. J Biol Chem 281 37345 37352
21. GrassJA
JingH
KimSI
MartowiczML
PalS
2006 Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol Cell Biol 26 7056 7067
22. WangH
ZhangY
ChengY
ZhouY
KingDC
2006 Experimental validation of predicted mammalian erythroid cis-regulatory modules. Genome Res 16 1480 1492
23. Kobayashi-OsakiM
OhnedaO
SuzukiN
MinegishiN
YokomizoT
2005 GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Mol Cell Biol 25 7005 7020
24. PimandaJE
OttersbachK
KnezevicK
KinstonS
ChanWY
2007 Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci U S A 104 17692 17697
25. WozniakRJ
BoyerME
GrassJA
LeeY
BresnickEH
2007 Context-dependent GATA factor function: combinatorial requirements for transcriptional control in hematopoietic and endothelial cells. J Biol Chem 282 14665 14674
26. ZhangJ
SocolovskyM
GrossAW
LodishHF
2003 Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102 3938 3946
27. SocolovskyM
NamH
FlemingMD
HaaseVH
BrugnaraC
2001 Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood 98 3261 3273
28. PalisJ
2008 Ontogeny of erythropoiesis. Curr Opin Hematol 15 155 161
29. McGrathK
PalisJ
2008 Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol 82 1 22
30. LenoxLE
PerryJM
PaulsonRF
2005 BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 105 2741 2748
31. PerryJM
HarandiOF
PaulsonRF
2007 BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 109 4494 4502
32. PorayetteP
PaulsonRF
2008 BMP4/Smad5 dependent stress erythropoiesis is required for the expansion of erythroid progenitors during fetal development. Dev Biol 317 24 35
33. MinegishiN
OhtaJ
SuwabeN
NakauchiH
IshiharaH
1998 Alternative promoters regulate transcription of the mouse GATA-2 gene. J Biol Chem 273 3625 3634
34. YuM
RivaL
XieH
SchindlerY
MoranTB
2009 Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 36 682 695
35. ShilatifardA
2008 Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20 341 348
36. PinskayaM
MorillonA
2009 Histone H3 lysine 4 di-methylation: a novel mark for transcriptional fidelity? Epigenetics 4 302 306
37. HublitzP
AlbertM
PetersAH
2009 Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol 53 335 354
38. BarskiA
CuddapahS
CuiK
RohTY
SchonesDE
2007 High-resolution profiling of histone methylations in the human genome. Cell 129 823 837
39. ZhaoXD
HanX
ChewJL
LiuJ
ChiuKP
2007 Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1 286 298
40. CuiK
ZangC
RohTY
SchonesDE
ChildsRW
2009 Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4 80 93
41. IllingworthRS
BirdAP
2009 CpG islands–‘a rough guide’. FEBS Lett 583 1713 1720
42. SongF
SmithJF
KimuraMT
MorrowAD
MatsuyamaT
2005 Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102 3336 3341
43. IrizarryRA
Ladd-AcostaC
WenB
WuZ
MontanoC
2009 The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41 178 186
44. OrfordK
KharchenkoP
LaiW
DaoMC
WorhunskyDJ
2008 Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev Cell 14 798 809
45. SchuettengruberB
ChourroutD
VervoortM
LeblancB
CavalliG
2007 Genome regulation by polycomb and trithorax proteins. Cell 128 735 745
46. BlobelGA
NakajimaT
EcknerR
MontminyM
OrkinSH
1998 CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci U S A 95 2061 2066
47. HongW
NakazawaM
ChenYY
KoriR
VakocCR
2005 FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. Embo J 24 2367 2378
48. RodriguezP
BonteE
KrijgsveldJ
KolodziejKE
GuyotB
2005 GATA-1 forms distinct activating and repressive complexes in erythroid cells. Embo J 24 2354 2366
49. SnowJW
OrkinSH
2009 Translational isoforms of FOG1 regulate GATA1-interacting complexes. J Biol Chem 284 29310 29319
50. KimSI
BultmanSJ
KieferCM
DeanA
BresnickEH
2009 BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci U S A 106 2259 2264
51. ImH
GrassJA
JohnsonKD
KimSI
BoyerME
2005 Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region. Proc Natl Acad Sci U S A 102 17065 17070
52. ImH
GrassJA
JohnsonKD
BoyerME
WuJ
2004 Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation. Methods Mol Biol 284 129 146
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Synthesizing and Salvaging NAD: Lessons Learned from
- Optimal Strategy for Competence Differentiation in Bacteria
- Long- and Short-Term Selective Forces on Malaria Parasite Genomes
- Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data